Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Sci Rep ; 14(1): 3000, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321133

RESUMEN

The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.


Asunto(s)
COVID-19 , Humanos , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad , SARS-CoV-2 , Genotipo
2.
Front Immunol ; 14: 1257321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022524

RESUMEN

Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g., T cells). Their pathogenesis involves a plethora of intracellular pathways. The translation of the research findings on CIDs molecular mechanisms into effective treatments is challenging and may explain the low remission rates despite modern targeted therapies. Modelling CID-related causal interactions as networks allows us to tackle the complexity at a systems level and improve our understanding of the interplay of key pathways. Here we report the construction, description, and initial applications of the SYSCID map (https://syscid.elixir-luxembourg.org/), a mechanistic causal interaction network covering the molecular crosstalk between IBD, RA and SLE. We demonstrate that the map serves as an interactive, graphical review of IBD, RA and SLE molecular mechanisms, and helps to understand the complexity of omics data. Examples of such application are illustrated using transcriptome data from time-series gene expression profiles following anti-TNF treatment and data from genome-wide associations studies that enable us to suggest potential effects to altered pathways and propose possible mechanistic biomarkers of treatment response.


Asunto(s)
Artritis Reumatoide , Enfermedades Inflamatorias del Intestino , Lupus Eritematoso Sistémico , Humanos , Inhibidores del Factor de Necrosis Tumoral , Artritis Reumatoide/etiología , Artritis Reumatoide/genética , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/genética , Resultado del Tratamiento , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/genética
3.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014266

RESUMEN

Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), has been shown to be of critical importance for immune responses to pathogens and vaccines. In recent years, B cell and T cell receptor repertoire sequencing (Rep-Seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci in different populations. Here we present a novel algorithm for extra-sensitive and specific variable (V) and joining (J) gene allele inference and genotyping allowing reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput genotyping and novel allele discovery from a wide variety of existing datasets. The developed algorithm is a part of the MiXCR software ( https://mixcr.com ) and can be incorporated into any pipeline utilizing upstream processing with MiXCR. We demonstrate the accuracy of this approach using Rep-Seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain (IGH) Rep-Seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain (TRA; TRB) Rep-Seq dataset, representing 134 individuals. This allowed us to assess the genetic diversity of genes within the IGH, TRA and TRB loci in different populations and demonstrate the connection between antibody repertoire gene usage and the number of allelic variants present in the population. Finally we established a database of allelic variants of V and J genes inferred from Rep-Seq data and their population frequencies with free public access at https://vdj.online .

4.
Liver Int ; 43(12): 2776-2793, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37804055

RESUMEN

BACKGROUND & AIMS: The class I- phosphatidylinositol-3 kinases (PI3Ks) signalling is dysregulated in almost all human cancers whereas the isoform-specific roles remain poorly investigated. We reported that the isoform δ (PI3Kδ) regulated epithelial cell polarity and plasticity and recent developments have heightened its role in hepatocellular carcinoma (HCC) and solid tumour progression. However, its role in cholangiocarcinoma (CCA) still lacks investigation. APPROACH & RESULTS: Immunohistochemical analyses of CCA samples reveal a high expression of PI3Kδ in the less differentiated CCA. The RT-qPCR and immunoblot analyses performed on CCA cells stably overexpressing PI3Kδ using lentiviral construction reveal an increase of mesenchymal and stem cell markers and the pluripotency transcription factors. CCA cells stably overexpressing PI3Kδ cultured in 3D culture display a thick layer of ECM at the basement membrane and a wide single lumen compared to control cells. Similar data are observed in vivo, in xenografted tumours established with PI3Kδ-overexpressing CCA cells in immunodeficient mice. The expression of mesenchymal and stemness genes also increases and tumour tissue displays necrosis and fibrosis, along with a prominent angiogenesis and lymphangiogenesis, as in mice liver of AAV8-based-PI3Kδ overexpression. These PI3Kδ-mediated cell morphogenesis and stroma remodelling were dependent on TGFß/Src/Notch signalling. Whole transcriptome analysis of PI3Kδ using the cancer cell line encyclopedia allows the classification of CCA cells according to cancer progression. CONCLUSIONS: Overall, our results support the critical role of PI3Kδ in the progression and aggressiveness of CCA via TGFß/src/Notch-dependent mechanisms and open new directions for the classification and treatment of CCA patients.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/patología , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta , Isoformas de Proteínas , Línea Celular Tumoral
5.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686257

RESUMEN

We aimed to analyse whether patients with ischaemic stroke (IS) occurring within eight days after the onset of COVID-19 (IS-COV) are associated with a specific aetiology of IS. We used SUPERGNOVA to identify genome regions that correlate between the IS-COV cohort (73 IS-COV cases vs. 701 population controls) and different aetiological subtypes. Polygenic risk scores (PRSs) for each subtype were generated and tested in the IS-COV cohort using PRSice-2 and PLINK to find genetic associations. Both analyses used the IS-COV cohort and GWAS from MEGASTROKE (67,162 stroke patients vs. 454,450 population controls), GIGASTROKE (110,182 vs. 1,503,898), and the NINDS Stroke Genetics Network (16,851 vs. 32,473). Three genomic regions were associated (p-value < 0.05) with large artery atherosclerosis (LAA) and cardioembolic stroke (CES). We found four loci targeting the genes PITX2 (rs10033464, IS-COV beta = 0.04, p-value = 2.3 × 10-2, se = 0.02), previously associated with CES, HS6ST1 (rs4662630, IS-COV beta = -0.04, p-value = 1.3 × 10-3, se = 0.01), TMEM132E (rs12941838 IS-COV beta = 0.05, p-value = 3.6 × 10-4, se = 0.01), and RFFL (rs797989 IS-COV beta = 0.03, p-value = 1.0 × 10-2, se = 0.01). A statistically significant PRS was observed for LAA. Our results suggest that IS-COV cases are genetically similar to LAA and CES subtypes. Larger cohorts are needed to assess if the genetic factors in IS-COV cases are shared with the general population or specific to viral infection.


Asunto(s)
Aterosclerosis , Isquemia Encefálica , COVID-19 , Accidente Cerebrovascular Embólico , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética , Isquemia Encefálica/complicaciones , Isquemia Encefálica/genética , COVID-19/complicaciones , COVID-19/genética , Accidente Cerebrovascular Isquémico/genética , Arterias
6.
Viruses ; 15(7)2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37515123

RESUMEN

(1) Background: Many vaccines require higher, additional doses or adjuvants to provide adequate protection for people living with HIV (PLWH). Despite their potential risk of severe coronavirus disease 2019, immunological data remain sparse, and a clear consensus for the best booster strategy is lacking. (2) Methods: Using the data obtained from our previous study assessing prospective T-cell and humoral immune responses before and after administration of a third dose of SARS-CoV-2 vaccine, we assessed the correlations between immune parameters reflecting humoral and cellular immune responses. We further aimed at identifying distinct clusters of patients with similar patterns of immune response evolution to determine how these relate to demographic and clinical factors. (3) Results: Among 80 PLWH and 51 healthcare workers (HCWs) enrolled in the study, cluster analysis identified four distinct patterns of evolution characterised by specific immune patterns and clinical factors. We observed that immune responses appeared to be less robust in cluster A, whose individuals were mostly PLWH who had never been infected with SARS-CoV-2. Cluster C, whose individuals showed a particularly drastic increase in markers of humoral immune response following the third dose of vaccine, was mainly composed of female participants who experienced SARS-CoV-2. Regarding the correlation study, although we observed a strong positive correlation between markers mirroring humoral immune response, markers of T-cell response following vaccination correlated only in a lesser extent with markers of humoral immunity. This suggests that neutralising antibody titers alone are not always a reliable reflection of the magnitude of the whole immune response. (4) Conclusions: Our findings show heterogeneity in immune responses among SARS-CoV-2 vaccinated PLWH. Specific subgroups could therefore benefit from distinct immunization strategies. Prior or breakthrough natural infection enhances the activity of vaccines and must be taken into account for informing global vaccine strategies among PLWH, even those with a viro-immunologically controlled infection.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Femenino , Vacunas contra la COVID-19 , Inmunidad Humoral , Estudios Prospectivos , Linfocitos T , COVID-19/prevención & control , SARS-CoV-2 , Análisis por Conglomerados , Infección Irruptiva , Anticuerpos Antivirales , Vacunación
7.
iScience ; 25(11): 105328, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36310583

RESUMEN

Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function "in population" experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort.

9.
Commun Biol ; 5(1): 740, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879421

RESUMEN

The stem cells involved in formation of the complex human body are epithelial cells that undergo apicobasal polarization and form a hollow lumen. Epithelial plasticity manifests as epithelial to mesenchymal transition (EMT), a process by which epithelial cells switch their polarity and epithelial features to adopt a mesenchymal phenotype. The connection between the EMT program and acquisition of stemness is now supported by a substantial number of reports, although what discriminates these two processes remains largely elusive. In this study, based on 3D organoid culture of hepatocellular carcinoma (HCC)-derived cell lines and AAV8-based protein overexpression in the mouse liver, we show that activity modulation of isoform δ of phosphoinositide 3-kinase (PI3Kδ) controls differentiation and discriminates between stemness and EMT by regulating the transforming growth factor ß (TGFß) signaling. This study provides an important tool to control epithelial cell fate and represents a step forward in understanding the development of aggressive carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Fosfatidilinositol 3-Quinasa Clase I , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Fosfatidilinositol 3-Quinasas , Factor de Crecimiento Transformador beta/metabolismo
10.
J Extracell Vesicles ; 11(6): e12228, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35656866

RESUMEN

Tumour-derived extracellular vesicles (EVs) participate in tumour progression by deregulating various physiological processes including angiogenesis and inflammation. Here we report that EVs released by endothelial cells in a mammary tumour environment participate in the recruitment of macrophages within the tumour, leading to an immunomodulatory phenotype permissive for tumour growth. Using RNA-Seq approaches, we identified several microRNAs (miRNAs) found in endothelial EVs sharing common targets involved in the regulation of the immune system. To further study the impact of these miRNAs in a mouse tumour model, we focused on three miRNAs that are conserved between humans and mouse, that is, miR-142-5p, miR-183-5p and miR-222-3p. These miRNAs are released from endothelial cells in a tumour microenvironment and are transferred via EVs to macrophages. In mouse mammary tumour models, treatment with EVs enriched in these miRNAs leads to a polarization of macrophages toward an M2-like phenotype, which in turn promotes tumour growth.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias , Animales , Modelos Animales de Enfermedad , Células Endoteliales , Vesículas Extracelulares/genética , Ratones , MicroARNs/genética , Microambiente Tumoral , Macrófagos Asociados a Tumores
11.
Front Immunol ; 13: 863554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711445

RESUMEN

Background: Understanding and measuring the individual level of immune protection and its persistence at both humoral and cellular levels after SARS-CoV-2 vaccination is mandatory for the management of the vaccination booster campaign. Our prospective study was designed to assess the immunogenicity of the BNT162b2 mRNA vaccine in triggering the cellular and humoral immune response in healthcare workers up to 12 months after the initial vaccination, with one additional boosting dose between 6 and 12 months. Methods: This prospective study enrolled 208 healthcare workers (HCWs) from the Liège University Hospital (CHU) of Liège in Belgium. Participants received two doses of BioNTech/Pfizer COVID-19 vaccine (BNT162b2) and a booster dose 6-12 months later. Fifty participants were SARS-CoV-2 experienced and 158 were naïve before the vaccination. Blood sampling was performed at the day of the first (T0) and second (T1) vaccine doses administration, then at 2 weeks (T2), 4 weeks (T3), 6 months (T4) and 12 months (T5) after the second dose. Between T4 and T5, participants also got the third boosting vaccine dose. A total of 1145 blood samples were collected. All samples were tested for the presence of anti-Spike antibodies, using the DiaSorin LIAISON SARS-CoV-2 Trimeric S IgG assay, and for anti-Nucleocapsid antibodies, using Elecsys anti-SARS-CoV-2 assay​​. Neutralizing antibodies against the SARS-CoV-2 Wuhan-like variant strain were quantified in all samples using a Vero E6 cell-based neutralization assay. Cell-mediated immune response was evaluated at T4 and T5 on 80 and 55 participants, respectively, by measuring the secretion of IFN-γ on peripheral blood lymphocytes using the QuantiFERON Human IFN-γ SARS-CoV-2, from Qiagen. We analyzed separately the naïve and experienced participants. Findings: We found that anti-spike antibodies and neutralization capacity levels were significantly higher in SARS-CoV-2 experienced HCWs compared to naïve HCWs at all time points analyzed except the one after boosting dose. Cellular immune response was also higher in experienced HCWs six months following vaccination. Besides the impact of SARS-CoV-2 infection history on immune response to BNT162b2 mRNA vaccine, we observed a significant negative association between age and persistence of humoral response. The booster dose induced an increase in humoral and cellular immune responses, particularly in naive individuals. Breakthrough infections resulted in higher cellular and humoral responses after the booster dose. Conclusions: Our data strengthen previous findings demonstrating that immunization through vaccination combined with natural infection is better than 2 vaccine doses immunization or natural infection alone. The benefit of the booster dose was greater in naive individuals. It may have implications for personalizing mRNA vaccination regimens used to prevent severe COVID-19 and reduce the impact of the pandemic on the healthcare system. More specifically, it may help prioritizing vaccination, including for the deployment of booster doses.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Humoral , Inmunoglobulina G , Cinética , Estudios Prospectivos , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
12.
Viruses ; 14(6)2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35746774

RESUMEN

Healthcare workers (HCWs) are known to be at higher risk of developing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections although whether these risks are equal across all occupational roles is uncertain. Identifying these risk factors and understand SARS-CoV-2 transmission pathways in healthcare settings are of high importance to achieve optimal protection measures. We aimed to investigate the implementation of a voluntary screening program for SARS-CoV-2 infections among hospital HCWs and to elucidate potential transmission pathways though phylogenetic analysis before the vaccination era. HCWs of the University Hospital of Liège, Belgium, were invited to participate in voluntary reverse transcriptase-polymerase chain reaction (RT-PCR) assays performed every week from April to December 2020. Phylogenetic analysis of SARS-CoV-2 genomes were performed for a subgroup of 45 HCWs. 5095 samples were collected from 703 HCWs. 212 test results were positive, 15 were indeterminate, and 4868 returned negative. 156 HCWs (22.2%) tested positive at least once during the study period. All SARS-CoV-2 test results returned negative for 547 HCWs (77.8%). Nurses (p < 0.05), paramedics (p < 0.05), and laboratory staff handling respiratory samples (p < 0.01) were at higher risk for being infected compared to the control non-patient facing group. Our phylogenetic analysis revealed that most positive samples corresponded to independent introduction events into the hospital. Our findings add to the growing evidence of differential risks of being infected among HCWs and support the need to implement appropriate protection measures based on each individual's risk profile to guarantee the protection of both HCWs and patients. Furthermore, our phylogenetic investigations highlight that most positive samples correspond to distinct introduction events into the hospital.


Asunto(s)
COVID-19 , Bélgica/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Atención a la Salud , Personal de Salud , Hospitales Universitarios , Humanos , Personal de Hospital , Filogenia , SARS-CoV-2/genética
13.
Front Microbiol ; 13: 811922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572712

RESUMEN

Being one of the most dynamic entities in the human body, glycosylation of proteins fine-tunes the activity of the organismal machinery, including the immune system, and mediates the interaction with the human microbial consortium, typically represented by the gut microbiome. Using data from 194 healthy individuals, we conducted an associational study to uncover potential relations between the gut microbiome and the blood plasma N-glycome, including N-glycome of immunoglobulin G. While lacking strong linkages on the multivariate level, we were able to identify associations between alpha and beta microbiome diversity and the blood plasma N-glycome profile. Moreover, for two bacterial genera, namely, Bilophila and Clostridium innocuum, significant associations with specific glycans were also shown. The study's results suggest a non-trivial, possibly weak link between the total plasma N-glycome and the gut microbiome, predominantly involving glycans related to the immune system proteins, including immunoglobulin G. Further studies of glycans linked to microbiome-related proteins in well-selected patient groups are required to conclusively establish specific associations.

14.
Acta Physiol (Oxf) ; 234(2): e13735, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34704357

RESUMEN

AIM: Dual Specificity Phosphatase 3 (DUSP3) regulates the innate immune response, with a putative role in angiogenesis. Modulating inflammation and perfusion contributes to renal conditioning against ischaemia/reperfusion (I/R). We postulate that the functional loss of DUSP3 is associated with kidney resistance to I/R. METHODS: Ten C57BL/6 male WT and Dusp3-/- mice underwent right nephrectomy and left renal I/R (30 min/48 hours). Renal injury was assessed based on serum levels of urea (BUN) and Jablonski score. The expression of CD31 and VEGF vascular markers was quantified by RT-qPCR and immuno-staining. Renal resistivity index (RRI) was measured in vivo by Doppler ultrasound. Comparative phosphoproteomics was conducted using IMAC enrichment of phosphopeptides. Inflammatory markers were quantified at both mRNA and protein levels in ischaemic vs non-ischaemic kidneys in WT vs Dusp3-/- . RESULTS: At baseline, we located DUSP3 in renal glomeruli and endothelial cells. CD31-positive vascular network was significantly larger in Dusp3-/- kidneys compared to WT, with a lower RRI in Dusp3-/- mice. Following I/R, BUN and Jablonski score were significantly lower in Dusp3-/- vs WT mice. Phosphoproteomics highlighted a down-regulation of inflammatory pathways and up-regulation of phospho-sites involved in cell metabolism and VEGF-related angiogenesis in Dusp3-/- vs WT ischaemic kidneys. Dusp3-/- ischaemic kidneys showed decreased mRNA levels of CD11b, TNF-α, KIM-1, IL-6, IL-1ß and caspase-3 compared to controls. The numbers of PCNA-, F4-80- and CD11b-positive cells were reduced in Dusp3-/- vs WT kidneys post-I/R. CONCLUSION: Genetic inactivation of Dusp3 is associated with kidney conditioning against I/R, possibly due to attenuated inflammation and improved perfusion.


Asunto(s)
Lesión Renal Aguda , Fosfatasa 3 de Especificidad Dual , Daño por Reperfusión , Lesión Renal Aguda/metabolismo , Animales , Fosfatasa 3 de Especificidad Dual/genética , Células Endoteliales/metabolismo , Inflamación/genética , Inflamación/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
15.
Pathogens ; 10(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34832518

RESUMEN

The testing and isolation of patients with coronavirus disease 2019 (COVID-19) are indispensable tools to control the ongoing COVID-19 pandemic. PCR tests are considered the "gold standard" of COVID-19 testing and mostly involve testing nasopharyngeal swab specimens. Our study aimed to compare the sensitivity of tests for various sample specimens. Seventy-five participants with confirmed COVID-19 were included in the study. Nasopharyngeal swabs, oropharyngeal swabs, Oracol-collected saliva, throat washes and rectal specimens were collected along with pooled swabs. Participants were asked to complete a questionnaire to correlate specific clinical symptoms and the symptom duration with the sensitivity of detecting COVID-19 in various sample specimens. Sampling was repeated after 7 to 10 days (T2), then after 14 to 20 days (T3) to perform a longitudinal analysis of sample specimen sensitivity. At the first time point, the highest percentages of SARS-CoV-2-positive samples were observed for nasopharyngeal samples (84.3%), while 74%, 68.2%, 58.8% and 3.5% of throat washing, Oracol-collected saliva, oropharyngeal and rectal samples tested positive, respectively. The sensitivity of all sampling methods except throat wash samples decreased rapidly at later time points compared to the first collection. The throat washing method exhibited better performance than the gold standard nasopharyngeal swab at the second and third time points after the first positive test date. Nasopharyngeal swabs were the most sensitive specimens for early detection after symptom onset. Throat washing is a sensitive alternative method. It was found that SARS-CoV-2 persists longer in the throat and saliva than in the nasopharynx.

16.
J Clin Invest ; 131(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597274

RESUMEN

BackgroundThere is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition.MethodsWe combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank.ResultsWe found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2-1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6-2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2-2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2-2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8-3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2-1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors.ConclusionsThe major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.


Asunto(s)
Alelos , COVID-19 , Cromosomas Humanos Par 3/genética , Frecuencia de los Genes , Sitios Genéticos , Polimorfismo Genético , SARS-CoV-2 , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/genética , COVID-19/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Factores de Riesgo
17.
Epigenetics Chromatin ; 14(1): 44, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530905

RESUMEN

BACKGROUND: Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL), but also for discriminating general from cell type-specific effects. RESULTS: Here, we present a two-step computational framework MAGAR ( https://bioconductor.org/packages/MAGAR ), which fully supports the identification of methQTLs from matched genotyping and DNA methylation data, and additionally allows for illuminating cell type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T cells, B cells) from healthy individuals and demonstrate the discrimination of common from cell type-specific methQTLs. We experimentally validate both types of methQTLs in an independent data set comprising additional cell types and tissues. Finally, we validate selected methQTLs located in the PON1, ZNF155, and NRG2 genes by ultra-deep local sequencing. In line with previous reports, we find cell type-specific methQTLs to be preferentially located in enhancer elements. CONCLUSIONS: Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell type-specific epigenomic variation.


Asunto(s)
Metilación de ADN , Sitios de Carácter Cuantitativo , Arildialquilfosfatasa , Epigenómica , Humanos , Factores de Crecimiento Nervioso
18.
Sci Rep ; 11(1): 8917, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903641

RESUMEN

Immune-mediated inflammatory diseases are characterized by variability in disease presentation and severity but studying it is a challenging task. Defining the limits of a healthy immune system is therefore a prior step to capture variability in disease conditions. The goal of this study is to characterize the global immune cell composition along with their influencing factors. Blood samples were collected from 2 independent cohorts of respectively 389 (exploratory) and 208 (replication) healthy subjects. Twelve immune cells were measured in blood together with biological parameters. Three complementary clustering approaches were used to evaluate if variability related to the immune cells could be characterized as clusters or as a continuum. Large coefficients of variation confirmed the inter-individual variability of immune cells. Considering all subset variations in an overall analysis, it appeared that the immune makeup was organized as a continuum through the two cohorts. Some intrinsic and environmental factors affected the inter-individual variability of cells but without unveiling separable groups with similar features. This study provides a framework based on complementary clustering approach for analyzing inter-individual variability of immune cells. Our analyses support the absence of clusters in our two healthy cohorts. Also, our study reports some influence of age, gender, BMI, cortisol, season and CMV infection on immune variability.


Asunto(s)
Sistema Inmunológico/fisiología , Modelos Inmunológicos , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
19.
Sci Rep ; 11(1): 5817, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712680

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic pathology in Western countries. It encompasses a spectrum of conditions ranging from simple steatosis to more severe and progressive non-alcoholic steatohepatitis (NASH) that can lead to hepatocellular carcinoma (HCC). Obesity and related metabolic syndrome are important risk factors for the development of NAFLD, NASH and HCC. DUSP3 is a small dual-specificity protein phosphatase with a poorly known physiological function. We investigated its role in metabolic syndrome manifestations and in HCC using a mouse knockout (KO) model. While aging, DUSP3-KO mice became obese, exhibited insulin resistance, NAFLD and associated liver damage. These phenotypes were exacerbated under high fat diet (HFD). In addition, DEN administration combined to HFD led to rapid HCC development in DUSP3-KO compared to wild type (WT) mice. DUSP3-KO mice had more serum triglycerides, cholesterol, AST and ALT compared to control WT mice under both regular chow diet (CD) and HFD. The level of fasting insulin was higher compared to WT mice, though, fasting glucose as well as glucose tolerance were normal. At the molecular level, HFD led to decreased expression of DUSP3 in WT mice. DUSP3 deletion was associated with increased and consistent phosphorylation of the insulin receptor (IR) and with higher activation of the downstream signaling pathway. In conclusion, our results support a new role for DUSP3 in obesity, insulin resistance, NAFLD and liver damage.


Asunto(s)
Carcinoma Hepatocelular/genética , Fosfatasa 3 de Especificidad Dual/genética , Neoplasias Hepáticas/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Eliminación de Gen , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/patología
20.
medRxiv ; 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33758887

RESUMEN

BACKGROUND: There is considerable variability in COVID-19 outcomes amongst younger adults-and some of this variation may be due to genetic predisposition. We characterized the clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent effect, using individual-level data in a large international multi-centre consortium. METHOD: The major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this genetic marker with mortality, COVID-19-related complications and laboratory values. We next examined if the magnitude of these associations varied by age and were independent from known clinical COVID-19 risk factors. FINDINGS: We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (hazard ratio [HR] 1·4, 95% confidence interval [CI] 1·2-1·6) and COVID-19 related mortality (HR 1·5, 95%CI 1·3-1·8). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (odds ratio [OR] 2·0, 95%CI 1·6-2·6), venous thromboembolism (OR 1·7, 95%CI 1·2-2·4), and hepatic injury (OR 1·6, 95%CI 1·2-2·0). Risk allele carriers ≤ 60 years had higher odds of death or severe respiratory failure (OR 2·6, 95%CI 1·8-3·9) compared to those > 60 years OR 1·5 (95%CI 1·3-1·9, interaction p-value=0·04). Amongst individuals ≤ 60 years who died or experienced severe respiratory COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2) were risk variant carriers, compared to 13·9% (95%CI 12·6-15·2%) of those not experiencing these outcomes. Prediction of death or severe respiratory failure among those ≤ 60 years improved when including the risk allele (AUC 0·82 vs 0·84, p=0·016) and the prediction ability of rs10490770 risk allele was similar to, or better than, most established clinical risk factors. INTERPRETATION: The major common COVID-19 risk locus on chromosome 3 is associated with increased risks of morbidity and mortality-and these are more pronounced amongst individuals ≤ 60 years. The effect on COVID-19 severity was similar to, or larger than most established risk factors, suggesting potential implications for clinical risk management. FUNDING: Funding was obtained by each of the participating cohorts individually.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA