RESUMEN
Dental implants constitute an important treatment modality for rehabilitating edentulous and partially edentulous arches. With more implant systems in the market, understanding the mechanical aspects of implants is crucial in understanding this indispensable therapy. However, microflora-related factors i.e. biological factors are also crucial. Despite the tremendous success rate of dental implants, it is not averse to failure. Both mechanical and microbial aspects in seclusion or together predispose to implant failure. Newer technological advances have paved the way for advanced techniques to identify the not-so-common flora causing implant failure. This review focuses on detailed mechanical and biological aspects and the sealing agent used to seal the implant-abutment interface. It also focuses on advanced molecular techniques like metagenomics and transcriptomics. A thorough literature search was performed with selected articles from electronic databases. A combination of in-vivo and in-vitro studies were considered to provide comprehensive information on the subject. Both the biomechanical aspects like micro gap, and microleakage, as well as microbial movements play confluent roles in implant failure. The focus should be on the different aspects through which microflora can penetrate the inner parts of the implant. Also, newer culture-independent techniques of detecting previously undetected oral flora should be included in future studies.