Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38853929

RESUMEN

Batten disease is characterized by early-onset blindness, juvenile dementia and death during the second decade of life. The most common genetic causes are mutations in the CLN3 gene encoding a lysosomal protein. There are currently no therapies targeting the progression of the disease, mostly due to the lack of knowledge about the disease mechanisms. To gain insight into the impact of CLN3 loss on cellular signaling and organelle function, we generated CLN3 knock-out cells in a human cell line (CLN3-KO), and performed RNA sequencing to obtain the cellular transcriptome. Following a multi-dimensional transcriptome analysis, we identified the transcriptional regulator YAP1 as a major driver of the transcriptional changes observed in CLN3-KO cells. We further observed that YAP1 pro-apoptotic signaling is hyperactive as a consequence of CLN3 functional loss in retinal pigment epithelia cells, and in the hippocampus and thalamus of CLN3exΔ7/8 mice, an established model of Batten disease. Loss of CLN3 activates YAP1 by a cascade of events that starts with the inability of releasing glycerophosphodiesthers from CLN3-KO lysosomes, which leads to perturbations in the lipid content of the nuclear envelope and nuclear dysmorphism. This results in increased number of DNA lesions, activating the kinase c-Abl, which phosphorylates YAP1, stimulating its pro-apoptotic signaling. Altogether, our results highlight a novel organelle crosstalk paradigm in which lysosomal metabolites regulate nuclear envelope content, nuclear shape and DNA homeostasis. This novel molecular mechanism underlying the loss of CLN3 in mammalian cells and tissues may open new c-Abl-centric therapeutic strategies to target Batten disease.

2.
Trends Cell Biol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866684

RESUMEN

Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.

3.
J Biol Chem ; 300(7): 107403, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782205

RESUMEN

Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional upregulation of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally downregulated in cellular and murine models of mitochondrial defects. We identified a role for the posttranscriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca2+ in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in Caenorhabditis elegans that normalization of lysosomal Ca2+ levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.

4.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496624

RESUMEN

Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in the cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Nevertheless, the signaling consequences of primary mitochondrial malfunction and of primary lysosomal defects are not similar, despite in both cases there are impairments of mitochondria and of lysosomes. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects, to identify what are the global cellular consequences that are associated with malfunction of mitochondria or lysosomes. We used these data to determine what are the pathways that are affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. This pathway is transcriptionally up-regulated in cellular and mouse models of lysosomal defects and is transcriptionally down-regulated in cellular and mouse models of mitochondrial defects. We identified a role for post-transcriptional regulation of the transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, the retention of Ca 2+ in the lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo , using models of mitochondria-associated diseases in C. elegans , that normalization of lysosomal Ca 2+ levels results in partial rescue of the developmental arrest induced by the respiratory chain deficiency.

5.
Theranostics ; 13(11): 3707-3724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441602

RESUMEN

Background: Extracellular vesicles (EVs) carry bioactive molecules associated with various biological processes, including miRNAs. In both Huntington's disease (HD) models and human samples, altered expression of miRNAs involved in synapse regulation was reported. Recently, the use of EV cargo to reverse phenotypic alterations in disease models with synaptopathy as the end result of the pathophysiological cascade has become an interesting possibility. Methods: Here, we assessed the contribution of EVs to GABAergic synaptic alterations using a human HD model and studied the miRNA content of isolated EVs. Results: After differentiating human induced pluripotent stem cells into electrophysiologically active striatal-like GABAergic neurons, we found that HD-derived neurons displayed reduced density of inhibitory synapse markers and GABA receptor-mediated ionotropic signaling. Treatment with EVs secreted by control (CTR) fibroblasts reversed the deficits in GABAergic synaptic transmission and increased the density of inhibitory synapses in HD-derived neuron cultures, while EVs from HD-derived fibroblasts had the opposite effects on CTR-derived neurons. Moreover, analysis of miRNAs from purified EVs identified a set of differentially expressed miRNAs between manifest HD, premanifest, and CTR lines with predicted synaptic targets. Conclusion: The EV-mediated reversal of the abnormal GABAergic phenotype in HD-derived neurons reinforces the potential role of EV-miRNAs on synapse regulation.


Asunto(s)
Vesículas Extracelulares , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Neuronas GABAérgicas/metabolismo , Vesículas Extracelulares/metabolismo
6.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347545

RESUMEN

Exact mechanisms of heat shock-induced lifespan extension, although documented across species, are still not well understood. Here, we show that fully functional peroxisomes, specifically peroxisomal catalase, are needed for the activation of canonical heat shock response and heat-induced hormesis in Caenorhabditis elegans Although during heat shock, the HSP-70 chaperone is strongly up-regulated in the WT and in the absence of peroxisomal catalase (ctl-2(ua90)II), the small heat shock proteins display modestly increased expression in the mutant. Nuclear foci formation of HSF-1 is reduced in the ctl-2(ua90)II mutant. In addition, heat-induced lifespan extension, observed in the WT, is absent in the ctl-2(ua90)II strain. Activation of the antioxidant response and pentose phosphate pathway are the most prominent changes observed during heat shock in the WT worm but not in the ctl-2(ua90)II mutant. Involvement of peroxisomes in the cell-wide cellular response to transient heat shock reported here gives new insight into the role of organelle communication in the organism's stress response.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catalasa/genética , Catalasa/metabolismo , Respuesta al Choque Térmico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
EMBO J ; 41(17): e112180, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35920021

RESUMEN

Refeeding after a period of starvation is known to suppress autophagy in the liver. Surprising new work by Seok et al (2022) shows that refeeding activates lipophagy in the intestine, which may help fats in our diet to be efficiently processed after a meal.


Asunto(s)
Metabolismo de los Lípidos , Inanición , Autofagia/fisiología , Humanos , Hígado/metabolismo , Inanición/metabolismo
8.
Eur J Clin Invest ; 52(10): e13820, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35638352

RESUMEN

Parkinson's disease (PD) is an incurable neurodegenerative movement disorder. PD affects 2% of the population above 65 years old; however, with the growing number of senior citizens, PD prevalence is predicted to increase in the following years. Pathologically, PD is characterized by dopaminergic cell neurodegeneration in the substantia nigra, resulting in decreased dopamine levels in the nigrostriatal pathway, triggering motor symptoms. Although the pathological mechanisms leading to PD are still unclear, large evidence indicates that oxidative stress plays an important role, not only because it increases with age which is the most significant risk factor for PD development, but also as a result of alterations in several processes, particularly mitochondria dysfunction. The modulation of oxidative stress, especially using dietary mitochondriotropic antioxidants, represents a promising approach to prevent or treat PD. Although most mitochondria-targeted antioxidants with beneficial effects in PD-associated models have failed to show any therapeutic benefit in clinical trials, several questions remain to be clarified. Hereby, we review the role played by oxidative stress in PD pathogenesis, emphasizing mitochondria as reactive oxygen species (ROS) producers and as targets for oxidative stress-related dysfunctional mechanisms. In addition, we also describe the importance of using dietary-based mitochondria-targeted antioxidants as a valuable strategy to counteract the deleterious effects of ROS in pre-clinical and/or clinical trials of PD, pointing out their significance to slow, and possibly halt, the progression of PD.


Asunto(s)
Enfermedad de Parkinson , Anciano , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
9.
Nat Commun ; 13(1): 2620, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551180

RESUMEN

Complex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies. Here, we generate C. elegans models for mitochondriopathies and show that depletion of complex I subunits recapitulates biochemical, cellular and neurodevelopmental aspects of the human diseases. We exploit two models, nuo-5/NDUFS1- and lpd-5/NDUFS4-depleted animals, for a suppressor screening that identifies lutein for its ability to rescue animals' neurodevelopmental deficits. We uncover overexpression of synaptic neuroligin as an evolutionarily conserved consequence of mitochondrial dysfunction, which we find to mediate an early cholinergic defect in C. elegans. We show lutein exerts its beneficial effects by restoring neuroligin expression independently from its antioxidant activity, thus pointing to a possible novel pathogenetic target for the human disease.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedades Mitocondriales , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Luteína/metabolismo , Luteína/farmacología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo
10.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34933920

RESUMEN

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like ß-sheet proteins (ß proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, ß proteins interact with and sequester AP-3 µ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3µ1 expression ameliorates neurotoxicity caused by ß proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


Asunto(s)
Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Mutación con Ganancia de Función , Neuronas/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/ultraestructura , Proteínas Amiloidogénicas/ultraestructura , Supervivencia Celular/genética , Expresión Génica , Lisosomas/metabolismo , Lisosomas/ultraestructura , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/ultraestructura , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Transducción de Señal
12.
Redox Biol ; 45: 102037, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34147843

RESUMEN

Parkinson's Disease (PD) is a neurodegenerative disorder affecting more than 10 million people worldwide. Currently, PD has no cure and no early diagnostics methods exist. Mitochondrial dysfunction is presented in the early stages of PD, and it is considered an important pathophysiology component. We have previously developed mitochondria-targeted hydroxycinnamic acid derivatives, presenting antioxidant and iron-chelating properties, and preventing oxidative stress in several biological models of disease. We have also demonstrated that skin fibroblasts from male sporadic PD patients (sPD) presented cellular and mitochondrial alterations, including increased oxidative stress, hyperpolarized and elongated mitochondria and decreased respiration and ATP levels. We also showed that forcing mitochondrial oxidative phosphorylation (OXPHOS) in sPD fibroblasts uncovers metabolic defects that were otherwise hidden. In this work, we tested the hypothesis that a lead mitochondria-targeted hydroxycinnamic acid derivative would revert the phenotype found in skin fibroblasts from sPD patients. Our results demonstrated that treating human skin fibroblasts from sPD patients with non-toxic concentrations of AntiOxCIN4 restored mitochondrial membrane potential and mitochondrial fission, decreased autophagic flux, and enhanced cellular responses to stress by improving the cellular redox state and decreasing reactive oxygen species (ROS) levels. Besides, fibroblasts from sPD patients treated with AntiOxCIN4 showed increased maximal respiration and metabolic activity, converting sPD fibroblasts physiologically more similar to their sex- and age-matched healthy controls. The positive compound effect was reinforced using a supervised machine learning model, confirming that AntiOxCIN4 treatment converted treated fibroblasts from sPD patients closer to the phenotype of control fibroblasts. Our data points out a possible mechanism of AntiOxCIN4 action contributing to a deeper understanding of how the use of mitochondria-targeted antioxidants based on a polyphenol scaffold can be used as potential drug candidates for delaying PD progression, validating the use of fibroblasts from sPD patients with more active OXPHOS as platforms for mitochondria-based drug development.


Asunto(s)
Enfermedad de Parkinson , Ácidos Cafeicos/metabolismo , Fibroblastos/metabolismo , Humanos , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo
14.
Aging (Albany NY) ; 12(24): 24484-24503, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33378272

RESUMEN

Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as well as discussions about the impact of aging research on society and economy. More than 2000 participants and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, at Columbia University, USA.


Asunto(s)
Envejecimiento , Inteligencia Artificial , Investigación Biomédica , Longevidad , Senescencia Celular , Congresos como Asunto , Descubrimiento de Drogas , Humanos , Estilo de Vida , Preparaciones Farmacéuticas
15.
Nat Commun ; 11(1): 5226, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067463

RESUMEN

Signs of proteostasis failure often entwine with those of metabolic stress at the cellular level. Here, we study protein sequestration during glucose deprivation-induced ATP decline in Saccharomyces cerevisiae. Using live-cell imaging, we find that sequestration of misfolded proteins and nascent polypeptides into two distinct compartments, stress granules, and Q-bodies, is triggered by the exhaustion of ATP. Both compartments readily dissolve in a PKA-dependent manner within minutes of glucose reintroduction and ATP level restoration. We identify the ATP hydrolase activity of Hsp104 disaggregase as the critical ATP-consuming process determining compartments abundance and size, even in optimal conditions. Sequestration of proteins into distinct compartments during acute metabolic stress and their retrieval during the recovery phase provide a competitive fitness advantage, likely promoting cell survival during stress.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Hidrólisis , Agregado de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad
16.
Aging (Albany NY) ; 12(7): 5590-5611, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32240104

RESUMEN

AMP-activated protein kinase (AMPK) integrates the regulation of cell growth and metabolism. AMPK activation occurs in response to cellular energy decline and mitochondrial dysfunction triggered by reactive oxygen species (ROS). In aged Tg-mtTFB1 mice, a mitochondrial deafness mouse model, hearing loss is accompanied with cochlear pathology including reduced endocochlear potential (EP) and loss of spiral ganglion neurons (SGN), inner hair cell (IHC) synapses and outer hair cells (OHC). Accumulated ROS and increased apoptosis signaling were also detected in cochlear tissues, accompanied by activation of AMPK. To further explore the role of AMPK signaling in the auditory phenotype, we used genetically knocked out AMPKα1 as a rescue to Tg-mtTFB1 mice and observed: improved ABR wave I, EP and IHC function, normal SGNs, IHC synapses morphology and OHC survivals, with decreased ROS, reduced pro-apoptotic signaling (Bax) and increased anti-apoptotic signaling (Bcl-2) in the cochlear tissues, indicating that reduced AMPK attenuated apoptosis via ROS-AMPK-Bcl2 pathway in the cochlea. To conclude, AMPK hyperactivation causes accelerated presbycusis in Tg-mtTFB1 mice by redox imbalance and dysregulation of the apoptosis pathway. The effects of AMPK downregulation on pro-survival function and reduction of oxidative stress indicate AMPK serves as a target to rescue or relieve mitochondrial hearing loss.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación hacia Abajo , Pérdida Auditiva/metabolismo , Presbiacusia/metabolismo , Transducción de Señal/fisiología , Animales , Apoptosis/fisiología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Ratones , Ratones Transgénicos , Estrés Oxidativo/fisiología , Presbiacusia/genética , Presbiacusia/patología , Especies Reactivas de Oxígeno/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Factores de Tiempo
17.
Nat Commun ; 11(1): 1266, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152276

RESUMEN

Endophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics. The levels and distributions of the main exocytic and endocytic factors were unchanged, and slow compensatory endocytosis was not robustly affected. Endophilin-A's role in exocytosis is mediated through its SH3-domain, specifically via a direct interaction with intersectin-1, a coordinator of exocytic and endocytic traffic. Endophilin-A not able to bind intersectin-1, and intersectin-1 not able to bind endophilin-A, resulted in similar exocytic defects in chromaffin cells. Altogether, we report that two endocytic proteins, endophilin-A and intersectin-1, are enriched on neurosecretory vesicles and regulate exocytosis by coordinating neurosecretory vesicle priming and fusion.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Endocitosis/fisiología , Sistemas Neurosecretores/metabolismo , Aciltransferasas/genética , Animales , Células Cromafines/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistemas Neurosecretores/citología
18.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165615, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759069

RESUMEN

Parkinson's Disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra. The exact mechanism by which dopaminergic neurodegeneration occurs is still unknown; however, mitochondrial dysfunction has long been implicated in PD pathogenesis. To investigate the sub-cellular events that lead to disease progression and to develop personalized interventions, non-neuronal cells which are collected in a minimally invasive manner can be key to test interventions aimed at improving mitochondrial function. We used human skin fibroblasts from sporadic PD (sPD) patients as a cell proxy to detect metabolic and mitochondrial alterations which would also exist in a non-neuronal cell type. In this model, we used a glucose-free/galactose- glutamine- and pyruvate-containing cell culture medium, which forces cells to be more dependent on oxidative phosphorylation (OXPHOS) for energy production, in order to reveal hidden metabolic and mitochondrial alterations present in fibroblasts from sPD patients. We demonstrated that fibroblasts from sPD patients show hyperpolarized and elongated mitochondrial networks and higher mitochondrial ROS concentration, as well as decreased ATP levels and glycolysis-related ECAR. Our results also showed that abnormalities of fibroblasts from sPD patients became more evident when stimulating OXPHOS. Under these culture conditions, fibroblasts from sPD cells presented decreased basal respiration, ATP-linked OCR and maximal respiration, and increased mitochondria-targeting phosphorylation of DRP1 when compared to control cells. Our work validates the relevance of using fibroblasts from sPD patients to study cellular and molecular changes that are characteristic of dopaminergic neurodegeneration of PD, and shows that forcing mitochondrial OXPHOS uncovers metabolic defects that were otherwise hidden.


Asunto(s)
Metabolismo Energético/fisiología , Fibroblastos/metabolismo , Enfermedades Metabólicas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Piel/metabolismo , Anciano , Galactosa/metabolismo , Glucosa/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Fosforilación Oxidativa , Consumo de Oxígeno/fisiología , Ácido Pirúvico/metabolismo , Sustancia Negra/metabolismo
19.
Trends Mol Med ; 26(1): 71-88, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31791731

RESUMEN

Cellular function requires coordination between different organelles and metabolic cues. Mitochondria and lysosomes are essential for cellular metabolism as major contributors of chemical energy and building blocks. It is therefore pivotal for cellular function to coordinate the metabolic roles of mitochondria and lysosomes. However, these organelles do more than metabolism, given their function as fundamental signaling platforms in the cell that regulate many key processes such as autophagy, proliferation, and cell death. Mechanisms of crosstalk between mitochondria and lysosomes are discussed, both under physiological conditions and in diseases that affect these organelles.


Asunto(s)
Lisosomas/metabolismo , Lisosomas/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Animales , Autofagia/fisiología , Muerte Celular/fisiología , Proliferación Celular/fisiología , Humanos , Redes y Vías Metabólicas/fisiología , Transducción de Señal/fisiología
20.
Elife ; 82019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31793879

RESUMEN

Lysosomal acidification is a key feature of healthy cells. Inability to maintain lysosomal acidic pH is associated with aging and neurodegenerative diseases. However, the mechanisms elicited by impaired lysosomal acidification remain poorly understood. We show here that inhibition of lysosomal acidification triggers cellular iron deficiency, which results in impaired mitochondrial function and non-apoptotic cell death. These effects are recovered by supplying iron via a lysosome-independent pathway. Notably, iron deficiency is sufficient to trigger inflammatory signaling in cultured primary neurons. Using a mouse model of impaired lysosomal acidification, we observed a robust iron deficiency response in the brain, verified by in vivo magnetic resonance imaging. Furthermore, the brains of these mice present a pervasive inflammatory signature associated with instability of mitochondrial DNA (mtDNA), both corrected by supplementation of the mice diet with iron. Our results highlight a novel mechanism linking impaired lysosomal acidification, mitochondrial malfunction and inflammation in vivo.


Asunto(s)
Ácidos/metabolismo , Inflamación/metabolismo , Inflamación/patología , Deficiencias de Hierro , Lisosomas/metabolismo , Animales , Apoptosis , Encéfalo/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Transporte de Electrón , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunidad Innata , Inflamación/genética , Hierro/farmacología , Lisosomas/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Biogénesis de Organelos , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , alfa-Glucosidasas/deficiencia , alfa-Glucosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...