Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894855

RESUMEN

Gram-negative bacteria, such as Escherichia coli, are characterized by an asymmetric outer membrane (OM) with lipopolysaccharide (LPS) located in the outer leaflet and phospholipids facing the inner leaflet. E. coli recruits LPS assembly proteins LapB, LapC and LapD in concert with FtsH protease to ensure a balanced biosynthesis of LPS and phospholipids. We recently reported that bacteria either lacking the periplasmic domain of the essential LapC protein (lapC190) or in the absence of LapD exhibit an elevated degradation of LpxC, which catalyzes the first committed step in LPS biosynthesis. To further understand the functions of LapC and LapD in regulating LPS biosynthesis, we show that the overproduction of the intact LapD suppresses the temperature sensitivity (Ts) of lapC190, but not when either its N-terminal transmembrane anchor or specific conserved amino acids in the C-terminal domain are mutated. Moreover, overexpression of srrA, marA, yceJ and yfgM genes can rescue the Ts phenotype of lapC190 bacteria by restoring LpxC amounts. We further show that MarA-mediated suppression requires the expression of mla genes, whose products participate in the maintenance of OM asymmetry, and the SrrA-mediated suppression requires the presence of cardiolipin synthase A.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , Fosfolípidos/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108660

RESUMEN

The cell envelope of Gram-negative bacteria contains two distinct membranes, an inner (IM) and an outer (OM) membrane, separated by the periplasm, a hydrophilic compartment that includes a thin layer of peptidoglycan [...].


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Periplasma/metabolismo , Pared Celular/metabolismo , Peptidoglicano/metabolismo
3.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077106

RESUMEN

Lipopolysaccharide (LPS) constitutes the major component of the outer membrane and is essential for bacteria, such as Escherichia coli. Recent work has revealed the essential roles of LapB and LapC proteins in regulating LPS amounts; although, if any additional partners are involved is unknown. Examination of proteins co-purifying with LapB identified LapD as a new partner. The purification of LapD reveals that it forms a complex with several proteins involved in LPS and phospholipid biosynthesis, including FtsH-LapA/B and Fab enzymes. Loss of LapD causes a reduction in LpxC amounts and vancomycin sensitivity, which can be restored by mutations that stabilize LpxC (mutations in lapB, ftsH and lpxC genes), revealing that LapD acts upstream of LapB-FtsH in regulating LpxC amounts. Interestingly, LapD absence results in the substantial retention of LPS in the inner membranes and synthetic lethality when either the lauroyl or the myristoyl acyl transferase is absent, which can be overcome by single-amino acid suppressor mutations in LPS flippase MsbA, suggesting LPS translocation defects in ΔlapD bacteria. Several genes whose products are involved in cell envelope homeostasis, including clsA, waaC, tig and micA, become essential in LapD's absence. Furthermore, the overproduction of acyl carrier protein AcpP or transcriptional factors DksA, SrrA can overcome certain defects of the LapD-lacking strain.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos , Oxidorreductasas/metabolismo , Aciltransferasas/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Lipopolisacáridos/metabolismo , Supresión Genética
4.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065855

RESUMEN

To identify the physiological factors that limit the growth of Escherichia coli K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire waa locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IVA derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ(gmhD-waaA) identified two independent single-amino-acid substitutions-P50S and R310S-in the LPS flippase MsbA. Interestingly, the cardiolipin synthase-encoding gene clsA was found to be essential for the growth of ΔlpxLMP, ΔlpxL, ΔwaaA, and Δ(gmhD-waaA) bacteria, with a conditional lethal phenotype of Δ(clsA lpxM), which could be overcome by suppressor mutations in MsbA. Suppressor mutations basS A20D or basR G53V, causing a constitutive incorporation of phosphoethanolamine (P-EtN) in the lipid A, could abolish the Ca++ sensitivity of Δ(waaC eptB), thereby compensating for P-EtN absence on the second Kdo. A single-amino-acid OppA S273G substitution is shown to overcome the synthetic lethality of Δ(waaC surA) bacteria, consistent with the chaperone-like function of the OppA oligopeptide-binding protein. Furthermore, overexpression of GcvB sRNA was found to repress the accumulation of LpxC and suppress the lethality of LapAB absence. Thus, this study identifies new and limiting factors in regulating LPS biosynthesis.


Asunto(s)
Escherichia coli K12/crecimiento & desarrollo , Genes Esenciales , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/genética , Transportadoras de Casetes de Unión a ATP/genética , Aciltransferasas/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Cardiolipinas/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Proteínas de la Membrana/genética , Mutaciones Letales Sintéticas , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
5.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008618

RESUMEN

The outer membrane (OM) of Gram-negative bacteria, such as Escherichia coli, is essential for their viability. Lipopolysaccharide (LPS) constitutes the major component of OM, providing the permeability barrier, and a tight balance exists between LPS and phospholipids amounts as both of these essential components use a common metabolic precursor. Hence, checkpoints are in place, right from the regulation of the first committed step in LPS biosynthesis mediated by LpxC through its turnover by FtsH and HslUV proteases in coordination with LPS assembly factors LapB and LapC. After the synthesis of LPS on the inner leaflet of the inner membrane (IM), LPS is flipped by the IM-located essential ATP-dependent transporter to the periplasmic face of IM, where it is picked up by the LPS transport complex spanning all three components of the cell envelope for its delivery to OM. MsbA exerts its intrinsic hydrocarbon ruler function as another checkpoint to transport hexa-acylated LPS as compared to underacylated LPS. Additional checkpoints in LPS assembly are: LapB-assisted coupling of LPS synthesis and translocation; cardiolipin presence when LPS is underacylated; the recruitment of RfaH transcriptional factor ensuring the transcription of LPS core biosynthetic genes; and the regulated incorporation of non-stoichiometric modifications, controlled by the stress-responsive RpoE sigma factor, small RNAs and two-component systems.


Asunto(s)
Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/química , Modelos Biológicos , Mutación/genética , Fosfolípidos/biosíntesis , Proteolisis
6.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260377

RESUMEN

We previously showed that lipopolysaccharide (LPS) assembly requires the essential LapB protein to regulate FtsH-mediated proteolysis of LpxC protein that catalyzes the first committed step in the LPS synthesis. To further understand the essential function of LapB and its role in LpxC turnover, multicopy suppressors of ΔlapB revealed that overproduction of HslV protease subunit prevents its lethality by proteolytic degradation of LpxC, providing the first alternative pathway of LpxC degradation. Isolation and characterization of an extragenic suppressor mutation that prevents lethality of ΔlapB by restoration of normal LPS synthesis identified a frame-shift mutation after 377 aa in the essential gene designated lapC, suggesting LapB and LapC act antagonistically. The same lapC gene was identified during selection for mutations that induce transcription from LPS defects-responsive rpoEP3 promoter, confer sensitivity to LpxC inhibitor CHIR090 and a temperature-sensitive phenotype. Suppressors of lapC mutants that restored growth at elevated temperatures mapped to lapA/lapB, lpxC and ftsH genes. Such suppressor mutations restored normal levels of LPS and prevented proteolysis of LpxC in lapC mutants. Interestingly, a lapC deletion could be constructed in strains either overproducing LpxC or in the absence of LapB, revealing that FtsH, LapB and LapC together regulate LPS synthesis by controlling LpxC amounts.


Asunto(s)
Amidohidrolasas/metabolismo , Biocatálisis , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biocatálisis/efectos de los fármacos , Secuencia Conservada , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Ácidos Hidroxámicos/farmacología , Lipopolisacáridos/química , Mutación/genética , Operón/genética , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Fosfolípidos/biosíntesis , Fosfolípidos/química , Regiones Promotoras Genéticas/genética , Dominios Proteicos , Proteolisis/efectos de los fármacos , Supresión Genética , Temperatura , Treonina/análogos & derivados , Treonina/farmacología , Transcripción Genética/efectos de los fármacos
7.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823955

RESUMEN

Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.


Asunto(s)
Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Dosificación de Gen , Isomerasa de Peptidilprolil/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos/metabolismo , Secuencia de Bases , Daño del ADN , Análisis Mutacional de ADN , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Genes Bacterianos , Movimiento , Ácido Nalidíxico/farmacología , Operón/genética
8.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545723

RESUMEN

Protein folding often requires molecular chaperones and folding catalysts, such as peptidyl-prolyl cis/trans isomerases (PPIs). The Escherichia coli cytoplasm contains six well-known PPIs, although a requirement of their PPIase activity, the identity of their substrates and relative enzymatic contribution is unknown. Thus, strains lacking all periplasmic and one of the cytoplasmic PPIs were constructed. Measurement of their PPIase activity revealed that PpiB is the major source of PPIase activity in the cytoplasm. Furthermore, viable Δ6ppi strains could be constructed only on minimal medium in the temperature range of 30-37 °C, but not on rich medium. To address the molecular basis of essentiality of PPIs, proteins that aggregate in their absence were identified. Next, wild-type and putative active site variants of FkpB, FklB, PpiB and PpiC were purified and in pull-down experiments substrates specific to each of these PPIs identified, revealing an overlap of some substrates. Substrates of PpiC were validated by immunoprecipitations using extracts from wild-type and PpiC-H81A strains carrying a 3xFLAG-tag appended to the C-terminal end of the ppiC gene on the chromosome. Using isothermal titration calorimetry, RpoE, RseA, S2, and AhpC were established as FkpB substrates and PpiC's PPIase activity was shown to be required for interaction with AhpC.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Calorimetría , Citoplasma/enzimología , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Modelos Moleculares , Mutación , Isomerasa de Peptidilprolil/genética , Pliegue de Proteína , Especificidad por Sustrato
9.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654491

RESUMEN

Distinguishing feature of the outer membrane (OM) of Gram-negative bacteria is its asymmetry due to the presence of lipopolysaccharide (LPS) in the outer leaflet of the OM and phospholipids in the inner leaflet. Recent studies have revealed the existence of regulatory controls that ensure a balanced biosynthesis of LPS and phospholipids, both of which are essential for bacterial viability. LPS provides the essential permeability barrier function and act as a major virulence determinant. In Escherichia coli, more than 100 genes are required for LPS synthesis, its assembly at inner leaflet of the inner membrane (IM), extraction from the IM, translocation to the OM, and in its structural alterations in response to various environmental and stress signals. Although LPS are highly heterogeneous, they share common structural elements defining their most conserved hydrophobic lipid A part to which a core polysaccharide is attached, which is further extended in smooth bacteria by O-antigen. Defects or any imbalance in LPS biosynthesis cause major cellular defects, which elicit envelope responsive signal transduction controlled by RpoE sigma factor and two-component systems (TCS). RpoE regulon members and specific TCSs, including their non-coding arm, regulate incorporation of non-stoichiometric modifications of LPS, contributing to LPS heterogeneity and impacting antibiotic resistance.


Asunto(s)
Lipopolisacáridos/química , Lipopolisacáridos/farmacología , Transporte Biológico , Glucosamina/biosíntesis , Lipopolisacáridos/biosíntesis , Modelos Biológicos , Fosfolípidos/metabolismo , Transducción de Señal
10.
Biochem Soc Trans ; 45(2): 417-425, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28408482

RESUMEN

Most bacteria encode a large repertoire of RNA-based regulatory mechanisms. Recent discoveries have revealed that the expression of many genes is controlled by a plethora of base-pairing noncoding small regulatory RNAs (sRNAs), regulatory RNA-binding proteins and RNA-degrading enzymes. Some of these RNA-based regulated processes respond to stress conditions and are involved in the maintenance of cellular homeostasis. They achieve it by either direct posttranscriptional repression of several mRNAs, including blocking access to ribosome and/or directing them to RNA degradation when the synthesis of their cognate proteins is unwanted, or by enhanced translation of some key stress-regulated transcriptional factors. Noncoding RNAs that regulate the gene expression by binding to regulatory proteins/transcriptional factors often act negatively by sequestration, preventing target recognition. Expression of many sRNAs is positively regulated by stress-responsive sigma factors like RpoE and RpoS, and two-component systems like PhoP/Q, Cpx and Rcs. Some of these regulatory RNAs act via a feedback mechanism on their own regulators, which is best reflected by recent discoveries, concerning the regulation of cell membrane composition by sRNAs in Escherichia coli and Salmonella, which are highlighted here.


Asunto(s)
Escherichia coli/fisiología , ARN Pequeño no Traducido/metabolismo , Salmonella/fisiología , Factor sigma/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Estabilidad del ARN , ARN Bacteriano/metabolismo , Salmonella/genética , Salmonella/metabolismo , Estrés Fisiológico
11.
J Biol Chem ; 291(44): 22999-23019, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27629414

RESUMEN

The RpoE σ factor is essential for the viability of Escherichia coli RpoE regulates extracytoplasmic functions including lipopolysaccharide (LPS) translocation and some of its non-stoichiometric modifications. Transcription of the rpoE gene is positively autoregulated by EσE and by unknown mechanisms that control the expression of its distally located promoter(s). Mapping of 5' ends of rpoE mRNA identified five new transcriptional initiation sites (P1 to P5) located distal to EσE-regulated promoter. These promoters are activated in response to unique signals. Of these P2, P3, and P4 defined major promoters, recognized by RpoN, RpoD, and RpoS σ factors, respectively. Isolation of trans-acting factors, in vitro transcriptional and gel retardation assays revealed that the RpoN-recognized P2 promoter is positively regulated by a QseE/F two-component system and NtrC activator, whereas the RpoD-regulated P3 promoter is positively regulated by a Rcs system in response to defects in LPS core biosynthesis, overproduction of certain lipoproteins, and the global regulator CRP. Strains synthesizing Kdo2-LA LPS caused up to 7-fold increase in the rpoEP3 activity, which was abrogated in Δ(waaC rcsB). Overexpression of a novel 73-nucleotide sRNA rirA (RfaH interacting RNA) generated by the processing of 5' UTR of the waaQ mRNA induces the rpoEP3 promoter activity concomitant with a decrease in LPS content and defects in the O-antigen incorporation. In the presence of RNA polymerase, RirA binds LPS regulator RfaH known to prevent premature transcriptional termination of waaQ and rfb operons. RirA in excess could titrate out RfaH causing LPS defects and the activation of rpoE transcription.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Lipopolisacáridos/deficiencia , Factor sigma/genética , Factores de Transcripción/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas , Factor sigma/metabolismo , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética
12.
Biomed Res Int ; 2015: 153561, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618164

RESUMEN

The outer membrane (OM) of Gram-negative bacteria is asymmetric due to the presence of lipopolysaccharide (LPS) facing the outer leaflet of the OM and phospholipids facing the periplasmic side. LPS is essential for bacterial viability, since it provides a permeability barrier and is a major virulence determinant in pathogenic bacteria. In Escherichia coli, several steps of LPS biosynthesis and assembly are regulated by the RpoE sigma factor and stress responsive two-component systems as well as dedicated small RNAs. LPS composition is highly heterogeneous and dynamically altered upon stress and other challenges in the environment because of the transcriptional activation of RpoE regulon members and posttranslational control by RpoE-regulated Hfq-dependent RybB and MicA sRNAs. The PhoP/Q two-component system further regulates Kdo2-lipid A modification via MgrR sRNA. Some of these structural alterations are critical for antibiotic resistance, OM integrity, virulence, survival in host, and adaptation to specific environmental niches. The heterogeneity arises following the incorporation of nonstoichiometric modifications in the lipid A part and alterations in the composition of inner and outer core of LPS. The biosynthesis of LPS and phospholipids is tightly coupled. This requires the availability of metabolic precursors, whose accumulation is controlled by sRNAs like SlrA, GlmZ, and GlmY.


Asunto(s)
Lipopolisacáridos/genética , ARN Pequeño no Traducido/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Periplasma/genética , Fosfolípidos/genética , Factor sigma/genética
13.
J Biol Chem ; 289(21): 14829-53, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24722986

RESUMEN

Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/metabolismo , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Secuencia de Bases , Western Blotting , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Esenciales/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Calor , Lipopolisacáridos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
J Biol Chem ; 288(12): 8111-8127, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23372159

RESUMEN

It is well established that lipopolysaccharide (LPS) often carries nonstoichiometric substitutions in lipid A and in the inner core. In this work, the molecular basis of inner core alterations and their physiological significance are addressed. A new inner core modification of LPS is described, which arises due to the addition of glucuronic acid on the third heptose with a concomitant loss of phosphate on the second heptose. This was shown by chemical and structural analyses. Furthermore, the gene whose product is responsible for the addition of this sugar was identified in all Escherichia coli core types and in Salmonella and was designated waaH. Its deduced amino acid sequence exhibits homology to glycosyltransferase family 2. The transcription of the waaH gene is positively regulated by the PhoB/R two-component system in a growth phase-dependent manner, which is coordinated with the transcription of the ugd gene explaining the genetic basis of this modification. Glucuronic acid modification was observed in E. coli B, K12, R2, and R4 core types and in Salmonella. We also show that the phosphoethanolamine (P-EtN) addition on heptose I in E. coli K12 requires the product of the ORF yijP, a new gene designated as eptC. Incorporation of P-EtN is also positively regulated by PhoB/R, although it can occur at a basal level without a requirement for any regulatory inducible systems. This P-EtN modification is essential for resistance to a variety of factors, which destabilize the outer membrane like the addition of SDS or challenge to sublethal concentrations of Zn(2+).


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminas/metabolismo , Ácido Glucurónico/metabolismo , Heptosas/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/genética , Conformación de Carbohidratos , Secuencia de Carbohidratos , Membrana Celular/metabolismo , Membrana Celular/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Glicosiltransferasas/genética , Lipopolisacáridos/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Transcripción Genética
15.
Innate Immun ; 18(2): 279-93, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21844130

RESUMEN

The mouse monoclonal antibody (mAb) WN1 222-5 recognizes a carbohydrate epitope in the inner core region of LPS that is shared by all strains of Escherichia coli and Salmonella enterica and is able to neutralize their endotoxic activity in vitro and in vivo. Immunization of mice with mAb WN1 222-5 yielded several anti-idiotypic mAbs one of which (mAb S81-19) competitively inhibited binding of mAb WN1 222-5 to E. coli and Salmonella LPS. After immunization of rabbits with mAb S81-19, the serological responses towards LPS were characterized at intervals over two years. Whereas the serological response against the anti-idiotype developed as expected, the anti-anti-idiotypic response against LPS developed slowly and antibodies appeared after 200 d that bound to E. coli LPS of the R3 core-type and neutralized its TNF-α inducing capacity for human peripheral mononuclear cells. We describe the generation of a novel anti-idiotypic antibody that can induce LPS core-reactive antibodies upon immunization in rabbits and show that it is possible, in principle, to obtain LPS neutralizing antibodies by anti-idiotypic immunization against the mAb WN1 222-5. The mimicked epitope likely shares common determinants with the WN1 222-5 epitope, yet differences with respect to either affinity or specificity do exist, as binding to smaller oligosaccharides of the inner core was not observed.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Anticuerpos Antibacterianos/biosíntesis , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/inmunología , Escherichia coli/inmunología , Animales , Anticuerpos Inmovilizados/inmunología , Reacciones Antígeno-Anticuerpo/efectos de los fármacos , Biotinilación , Western Blotting , Fusión Celular , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Hibridomas , Inmunización , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Monocitos/efectos de los fármacos , Oligosacáridos/inmunología , Conejos , Salmonella enterica/inmunología , Estimulación Química , Factor de Necrosis Tumoral alfa/inmunología
16.
J Biol Chem ; 286(50): 42787-807, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22021036

RESUMEN

Mass spectrometric analyses of lipopolysaccharide (LPS) from isogenic Escherichia coli strains with nonpolar mutations in the waa locus or overexpression of their cognate genes revealed that waaZ and waaS are the structural genes required for the incorporation of the third 3-deoxy-α-D-manno-oct-2-ulosonic acid (Kdo) linked to Kdo disaccharide and rhamnose, respectively. The incorporation of rhamnose requires prior sequential incorporation of the Kdo trisaccharide. The minimal in vivo lipid A-anchored core structure Kdo(2)Hep(2)Hex(2)P(1) in the LPS from ΔwaaO (lacking α-1,3-glucosyltransferase) could incorporate Kdo(3)Rha, without the overexpression of the waaZ and waaS genes. Examination of LPS heterogeneity revealed overlapping control by RpoE σ factor, two-component systems (BasS/R and PhoB/R), and ppGpp. Deletion of RpoE-specific anti-σ factor rseA led to near-exclusive incorporation of glycoforms with the third Kdo linked to Kdo disaccharide. This was accompanied by concomitant incorporation of rhamnose, linked to either the terminal third Kdo or to the second Kdo, depending upon the presence or absence of phosphoethanolamine on the second Kdo with truncation of the outer core. This truncation in ΔrseA was ascribed to decreased levels of WaaR glycosyltransferase, which was restored to wild-type levels, including overall LPS composition, upon the introduction of rybB sRNA deletion. Thus, ΔwaaR contained LPS primarily with Kdo(3) without any requirement for lipid A modifications. Accumulation of a glycoform with Kdo(3) and 4-amino-4-deoxy-l-arabinose in lipid A in ΔrseA required ppGpp, being abolished in a Δ(ppGpp(0) rseA). Furthermore, Δ(waaZ lpxLMP) synthesizing tetraacylated lipid A exhibited synthetic lethality at 21-23°C pointing to the significance of the incorporation of the third Kdo.


Asunto(s)
Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Ramnosa/química , Western Blotting , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Lipopolisacáridos/química , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , ARN Pequeño no Traducido/genética , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
PLoS One ; 6(6): e20063, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695201

RESUMEN

The molecular mechanism supporting survival at a critical high temperature (CHT) in Escherichia coli was investigated. Genome-wide screening with a single-gene knockout library provided a list of genes indispensable for growth at 47°C, called thermotolerant genes. Genes for which expression was affected by exposure to CHT were identified by DNA chip analysis. Unexpectedly, the former contents did not overlap with the latter except for dnaJ and dnaK, indicating that a specific set of non-heat shock genes is required for the organism to survive under such a severe condition. More than half of the mutants of the thermotolerant genes were found to be sensitive to H(2)O(2) at 30°C, suggesting that the mechanism of thermotolerance partially overlaps with that of oxidative stress resistance. Their encoded enzymes or proteins are related to outer membrane organization, DNA double-strand break repair, tRNA modification, protein quality control, translation control or cell division. DNA chip analyses of essential genes suggest that many of the genes encoding ribosomal proteins are down-regulated at CHT. Bioinformatics analysis and comparison with the genomic information of other microbes suggest that E. coli possesses several systems for survival at CHT. This analysis allows us to speculate that a lipopolysaccharide biosynthesis system for outer membrane organization and a sulfur-relay system for tRNA modification have been acquired by horizontal gene transfer.


Asunto(s)
Escherichia coli K12/crecimiento & desarrollo , Escherichia coli K12/genética , Calor , Viabilidad Microbiana/genética , Adaptación Fisiológica/genética , Biología Computacional , Regulación hacia Abajo/genética , Regulación Bacteriana de la Expresión Génica , Transferencia de Gen Horizontal/genética , Genes Bacterianos/genética , Respuesta al Choque Térmico/genética , Estrés Oxidativo/genética , Regulación hacia Arriba/genética
18.
Genes Cells ; 14(7): 885-99, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19549168

RESUMEN

To understand the mechanism of sigma(E)-dependent cell lysis, we examined the consequences of deletion derivatives of rpoE regulators rseA, rseB and rseC on sigma(E) transcription, on levels of free versus membrane-bound sigma(E) and on OMP-biogenesis limiting factor(s) that could impact cell lysis. RT-PCR showed that individual nonpolar DeltarseA and DeltarseB increased the rpoE expression to varying extents, with pronounced induction in DeltarseA. Significantly the ratio of soluble (free) versus membrane-bound form of RpoE increased in DeltarseA, however without increase of its total amount, unraveling furthermore complexity in RpoE regulation. Significant characteristics of cell lysis, accompanied by a severe reduction in the levels of periplasmic OMP-folding factor (PpiD), were observed in DeltarseA. The cell-lysis phenotype of DeltarseA was suppressed by either rseA or ppiD plasmids, but neither by rseB nor by rseC clones. However, the cell lysis of the wild-type strain was almost completely repressed not only by the rseA clone but also by the rseB clone, suggesting RseB might be limiting in vivo. Thus, increase in the ratio of free sigma(E) in rseA mutants with a concomitant reduction in PpiD levels can account for sigma(E)-dependent lysis in concert with a potential role of small RNAs on the lysis process.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Isomerasa de Peptidilprolil/genética , Periplasma/metabolismo , Fenotipo , Factor sigma/genética , Transducción de Señal , Transcripción Genética
19.
J Biol Chem ; 284(23): 15369-89, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19346244

RESUMEN

To elucidate the minimal lipopolysaccharide (LPS) structure needed for the viability of Escherichia coli, suppressor-free strains lacking either the 3-deoxy-d-manno-oct-2-ulosonic acid transferase waaA gene or derivatives of the heptosyltransferase I waaC deletion with lack of one or all late acyltransferases (lpxL/M/P) and/or various outer membrane biogenesis factors were constructed. Delta(waaC lpxL lpxM lpxP) and waaA mutants exhibited highly attenuated growth, whereas simultaneous deletion of waaC and surA was lethal. Analyses of LPS of suppressor-free waaA mutants grown at 21 degrees C, besides showing accumulation of free lipid IV(A) precursor, also revealed the presence of its pentaacylated and hexaacylated derivatives, indicating in vivo late acylation can occur without Kdo. In contrast, LPS of Delta(waaC lpxL lpxM lpxP) strains showed primarily Kdo(2)-lipid IV(A), indicating that these minimal LPS structures are sufficient to support growth of E. coli under slow-growth conditions at 21/23 degrees C. These lipid IV(A) derivatives could be modified biosynthetically by phosphoethanolamine, but not by 4-amino-4-deoxy-l-arabinose, indicating export defects of such minimal LPS. DeltawaaA and Delta(waaC lpxL lpxM lpxP) exhibited cell-division defects with a decrease in the levels of FtsZ and OMP-folding factor PpiD. These mutations led to strong constitutive additive induction of envelope responsive CpxR/A and sigma(E) signal transduction pathways. Delta(lpxL lpxM lpxP) mutant, with intact waaC, synthesized tetraacylated lipid A and constitutively incorporated a third Kdo in growth medium inducing synthesis of P-EtN and l-Ara4N. Overexpression of msbA restored growth of Delta(lpxL lpxM lpxP) under fast-growing conditions, but only partially that of the Delta(waaC lpxL lpxM lpxP) mutant. This suppression could be alleviated by overexpression of certain mutant msbA alleles or the single-copy chromosomal MsbA-498V variant in the vicinity of Walker-box II.


Asunto(s)
Aciltransferasas/deficiencia , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Glicosiltransferasas/deficiencia , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/química , Supresión Genética , Deleción Cromosómica , Cromosomas Bacterianos/genética , Escherichia coli K12/crecimiento & desarrollo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Mutación , Plásmidos , beta-Galactosidasa/metabolismo
20.
J Mater Sci Mater Med ; 20 Suppl 1: S235-41, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18716714

RESUMEN

The specific role of size scale, surface capping, and aspect ratio of zinc oxide (ZnO) particles on toxicity toward prokaryotic and eukaryotic cells was investigated. ZnO nano and microparticles of controlled size and morphology were synthesized by wet chemical methods. Cytotoxicity toward mammalian cells was studied using a human osteoblast cancer cell line and antibacterial activity using Gram-negative bacteria (Escherichia coli) as well as using Gram-positive bacteria (Staphylococcus aureus). Scanning electron microscopy (SEM) was conducted to characterize any visual features of the biocidal action of ZnO. We observed that antibacterial activity increased with reduction in particle size. Toxicity toward the human cancer cell line was considerably higher than previously observed by other researchers on the corresponding primary cells, suggesting selective toxicity of the ZnO to cancer cells. Surface capping was also found to profoundly influence the toxicity of ZnO nanoparticles toward the cancer cell line, with the toxicity of starch-capped ZnO being the lowest. Our results are found to be consistent with a membrane-related mechanism for nanoparticle toxicity toward microbes.


Asunto(s)
Bacterias/efectos de los fármacos , Neoplasias Óseas/patología , Microesferas , Nanopartículas , Tamaño de la Partícula , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Citotoxinas/química , Citotoxinas/farmacología , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Nanopartículas/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Polietilenglicoles/química , Staphylococcus aureus/efectos de los fármacos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA