Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 19(12): e202300597, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38526011

RESUMEN

Doxycycline, a semi-synthetic tetracycline, is a widely used antibiotic for treating mild-to-moderate infections, including skin problems. However, its anti-inflammatory and antioxidant properties, combined with its ability to interfere with α-synuclein aggregation, make it an attractive candidate for repositioning in Parkinson's disease. Nevertheless, the antibiotic activity of doxycycline restricts its potential use for long-term treatment of Parkinsonian patients. In the search for non-antibiotic tetracyclines that could operate against Parkinson's disease pathomechanisms, eighteen novel doxycycline derivatives were designed. Specifically, the dimethyl-amino group at C4 was reduced, resulting in limited antimicrobial activity, and several coupling reactions were performed at position C9 of the aromatic D ring, this position being one of the most reactive for introducing substituents. Using the Thioflavin-T assay, we found seven compounds were more effective than doxycycline in inhibiting α-synuclein aggregation. Furthermore, two of these derivatives exhibited better anti-inflammatory effects than doxycycline in a culture system of microglial cells used to model Parkinson's disease neuroinflammatory processes. Overall, through structure-activity relationship studies, we identified two newly designed tetracyclines as promising drug candidates for Parkinson's disease treatment.


Asunto(s)
Doxiciclina , Enfermedad de Parkinson , Agregado de Proteínas , alfa-Sinucleína , Doxiciclina/farmacología , Doxiciclina/química , alfa-Sinucleína/metabolismo , alfa-Sinucleína/antagonistas & inhibidores , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Humanos , Relación Estructura-Actividad , Agregado de Proteínas/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química
2.
Neuropharmacology ; 251: 109926, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554815

RESUMEN

We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.


Asunto(s)
Compuestos Bicíclicos con Puentes , Cannabidiol/análogos & derivados , Cannabinoides , Capsaicina/análogos & derivados , Discinesia Inducida por Medicamentos , Levodopa , Ratas , Ratones , Animales , Levodopa/uso terapéutico , Antiparkinsonianos/farmacología , Ratas Sprague-Dawley , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Ratones Endogámicos C57BL , Cuerpo Estriado , Oxidopamina/farmacología , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad
3.
Glia ; 72(3): 529-545, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38013496

RESUMEN

To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1ß in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 µM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.


Asunto(s)
Compuestos Bicíclicos con Puentes , Cannabidiol/análogos & derivados , Cannabinoides , Microglía , Ratones , Animales , Astrocitos , Lipopolisacáridos/toxicidad , Cannabinoides/farmacología , Encéfalo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
4.
Cells ; 12(9)2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-37174736

RESUMEN

Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson's disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode C. elegans as an in vivo model organism. We established that CLD kills cultured DA neurons in a concentration- and time-dependent manner while exerting no direct proinflammatory effects on glial cells. DA cell loss was not impacted by the degree of maturation of the culture. The use of fluorogenic probes revealed that CLD neurotoxicity was the consequence of oxidative stress-mediated insults and mitochondrial disturbances. In C. elegans worms, CLD exposure caused a progressive loss of DA neurons associated with locomotor deficits secondary to alterations in food perception. L-DOPA, a molecule used for PD treatment, corrected these deficits. Cholinergic and serotoninergic neuronal cells were also affected by CLD in C. elegans, although to a lesser extent than DA neurons. Noticeably, CLD also promoted the phosphorylation of the aggregation-prone protein tau (but not of α-synuclein) both in midbrain cell cultures and in a transgenic C. elegans strain expressing a human form of tau in neurons. In summary, our data suggest that CLD is more likely to promote atypical forms of Parkinsonism characterized by tau pathology than classical synucleinopathy-associated PD.


Asunto(s)
Clordecona , Enfermedad de Parkinson , Trastornos Parkinsonianos , Plaguicidas , Animales , Humanos , Ratones , Caenorhabditis elegans/metabolismo , Clordecona/metabolismo , Plaguicidas/toxicidad , Ecosistema , Trastornos Parkinsonianos/patología , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/patología
5.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36978822

RESUMEN

Several studies have reported that the tetracycline (TC) class antibiotic doxycycline (DOX) is effective against Parkinson's disease (PD) pathomechanisms. The aim of the present work was three-fold: (i) Establish a model system to better characterize neuroprotection by DOX; (ii) Compare the rescue effect of DOX to that of other TC antibiotics; (iii) Discover novel neuroprotective TCs having reduced antibiotic activity. For that, we used cultures of mouse midbrain dopamine (DA) neurons and experimental conditions that model iron-mediated oxidative damage, a key mechanism in PD pathobiology. We found that DOX and the other TC antibiotic, demeclocycline (DMC), provided sustained protection to DA neurons enduring iron-mediated insults, whereas chlortetracycline and non-TC class antibiotics did not. Most interestingly, non-antibiotic derivatives of DOX and DMC, i.e., DDOX and DDMC, respectively, were also robustly protective for DA neurons. Interestingly, DOX, DDOX, DMC, and DDMC remained protective for DA neurons until advanced stages of neurodegeneration, and the rescue effects of TCs were observable regardless of the degree of maturity of midbrain cultures. Live imaging studies with the fluorogenic probes DHR-123 and TMRM revealed that protective TCs operated by preventing intracellular oxidative stress and mitochondrial membrane depolarization, i.e., cellular perturbations occurring in this model system as the ultimate consequence of ferroptosis-mediated lipid peroxidation. If oxidative/mitochondrial insults were generated acutely, DOX, DDOX, DMC, and DDMC were no longer neuroprotective, suggesting that these compounds are mostly effective when neuronal damage is chronic and of low-intensity. Overall, our data suggest that TC derivatives, particularly those lacking antibiotic activity, might be of potential therapeutic utility to combat low-level oxidative insults that develop chronically in the course of PD neurodegeneration.

6.
Front Pharmacol ; 13: 1045465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506543

RESUMEN

The pharmacological manipulation of neuroinflammation appears to be a promising strategy to alleviate l-DOPA-induced dyskinesia (LID) in Parkinson's disease (PD). Doxycycline (Doxy), a semisynthetic brain-penetrant tetracycline antibiotic having interesting anti-inflammatory properties, we addressed the possibility that this compound could resolve LID in l-DOPA-treated C57BL/6 mice presenting either moderate or intermediate lesions of the mesostriatal dopaminergic pathway generated by intrastriatal injections of 6-OHDA. Doxy, when given subcutaneously before l-DOPA at doses of 20 mg kg-1 and 40 mg kg-1, led to significant LID reduction in mice with moderate and intermediate dopaminergic lesions, respectively. Importantly, Doxy did not reduce locomotor activity improved by l-DOPA. To address the molecular mechanism of Doxy, we sacrificed mice with mild lesions 1) to perform the immunodetection of tyrosine hydroxylase (TH) and Fos-B and 2) to evaluate a panel of inflammation markers in the striatum, such as cyclooxygenase-2 and its downstream product Prostaglandin E2 along with the cytokines TNF-α, IL-1ß and IL-6. TH-immunodetection revealed that vehicle and Doxy-treated mice had similar striatal lesions, excluding that LID improvement by Doxy could result from neurorestorative effects. Importantly, LID inhibition by Doxy was associated with decreased Fos-B and COX-2 expression and reduced levels of PGE2, TNF-α, and IL-1ß in the dorsolateral striatum of dyskinetic mice. We conclude 1) that Doxy has the potential to prevent LID regardless of the intensity of dopaminergic lesioning and 2) that the anti-inflammatory effects of Doxy probably account for LID attenuation. Overall, the present results further indicate that Doxy might represent an attractive and alternative treatment for LID in PD.

7.
ACS Chem Neurosci ; 13(23): 3303-3313, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36347018

RESUMEN

A tetrahydroisoquinoline identified in Mucuna pruriens ((1R,3S)-6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline-1,3-dicarboxylic acid, compound 4) was synthesized and assessed for its in vitro pharmacological profile and in vivo effects in two animal models of Parkinson's disease. Compound 4 inhibits catechol-O-methyltransferase (COMT) with no affinity for the dopaminergic receptors or the dopamine transporter. It restores dopamine-mediated motor behavior when it is co-administered with L-DOPA to C. elegans worms with 1-methyl-4-phenylpyridinium-damaged dopaminergic neurons. In a 6-hydroxydopamine rat model of Parkinson's disease, its co-administration at 30 mg/kg with L-DOPA enhances the effect of L-DOPA with an intensity similar to that of tolcapone 1 at 30 mg/kg but for a shorter duration. The effect is not dose-dependent. Compound 4 seems not to cross the blood-brain barrier and thus acts as a peripheral COMT inhibitor. COMT inhibition by compound 4 further validates the traditional use of M. pruriens for the treatment of Parkinson's disease, and compound 4 can thus be considered as a promising drug candidate for the development of safe, peripheral COMT inhibitors.


Asunto(s)
Levodopa , Enfermedad de Parkinson , Animales , Ratas , Levodopa/farmacología , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Catecol O-Metiltransferasa , Caenorhabditis elegans , Personalidad
8.
Cells ; 11(17)2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36078167

RESUMEN

The antibiotic tetracycline demeclocycline (DMC) was recently reported to rescue α-synuclein (α-Syn) fibril-induced pathology. However, the antimicrobial activity of DMC precludes its potential use in long-term neuroprotective treatments. Here, we synthesized a doubly reduced DMC (DDMC) derivative with residual antibiotic activity and improved neuroprotective effects. The molecule was obtained by removal the dimethylamino substituent at position 4 and the reduction of the hydroxyl group at position 12a on ring A of DMC. The modifications strongly diminished its antibiotic activity against Gram-positive and Gram-negative bacteria. Moreover, this compound preserved the low toxicity of DMC in dopaminergic cell lines while improving its ability to interfere with α-Syn amyloid-like aggregation, showing the highest effectiveness of all tetracyclines tested. Likewise, DDMC demonstrated the ability to reduce seeding induced by the exogenous addition of α-Syn preformed fibrils (α-SynPFF) in biophysical assays and in a SH-SY5Y-α-Syn-tRFP cell model. In addition, DDMC rendered α-SynPFF less inflammogenic. Our results suggest that DDMC may be a promising drug candidate for hit-to-lead development and preclinical studies in Parkinson's disease and other synucleinopathies.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Sinucleinopatías , Antibacterianos/farmacología , Demeclociclina , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Plomo , Fármacos Neuroprotectores/farmacología
9.
Cells ; 10(8)2021 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440932

RESUMEN

We used mouse microglial cells in culture activated by lipopolysaccharide (LPS) or α-synuclein amyloid aggregates (αSa) to study the anti-inflammatory effects of COL-3, a tetracycline derivative without antimicrobial activity. Under LPS or αSa stimulation, COL-3 (10, 20 µM) efficiently repressed the induction of the microglial activation marker protein Iba-1 and the stimulated-release of the pro-inflammatory cytokine TNF-α. COL-3's inhibitory effects on TNF-α were reproduced by the tetracycline antibiotic doxycycline (DOX; 50 µM), the glucocorticoid dexamethasone, and apocynin (APO), an inhibitor of the superoxide-producing enzyme NADPH oxidase. This last observation suggested that COL-3 and DOX might also operate themselves by restraining oxidative stress-mediated signaling events. Quantitative measurement of intracellular reactive oxygen species (ROS) levels revealed that COL-3 and DOX were indeed as effective as APO in reducing oxidative stress and TNF-α release in activated microglia. ROS inhibition with COL-3 or DOX occurred together with a reduction of microglial glucose accumulation and NADPH synthesis. This suggested that COL-3 and DOX might reduce microglial oxidative burst activity by limiting the glucose-dependent synthesis of NADPH, the requisite substrate for NADPH oxidase. Coherent with this possibility, the glycolysis inhibitor 2-deoxy-D-glucose reproduced the immunosuppressive action of COL-3 and DOX in activated microglia. Overall, we propose that COL-3 and its parent compound DOX exert anti-inflammatory effects in microglial cells by inhibiting glucose-dependent ROS production. These effects might be strengthened by the intrinsic antioxidant properties of DOX and COL-3 in a self-reinforcing manner.


Asunto(s)
Doxiciclina/química , Doxiciclina/farmacología , Microglía/efectos de los fármacos , Tetraciclinas/química , Tetraciclinas/farmacología , Animales , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Glucosa/metabolismo , Ratones , Microglía/metabolismo , Microscopía Electrónica de Transmisión , Neuroinmunomodulación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
10.
Front Aging Neurosci ; 13: 635760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828477

RESUMEN

Tauopathies are neurodegenerative disorders with increasing incidence and still without cure. The extensive time required for development and approval of novel therapeutics highlights the need for testing and repurposing known safe molecules. Since doxycycline impacts α-synuclein aggregation and toxicity, herein we tested its effect on tau. We found that doxycycline reduces amyloid aggregation of the 2N4R and K18 isoforms of tau protein in a dose-dependent manner. Furthermore, in a cell free system doxycycline also prevents tau seeding and in cell culture reduces toxicity of tau aggregates. Overall, our results expand the spectrum of action of doxycycline against aggregation-prone proteins, opening novel perspectives for its repurposing as a disease-modifying drug for tauopathies.

11.
Br J Pharmacol ; 178(13): 2595-2616, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33751546

RESUMEN

BACKGROUND AND PURPOSE: l-DOPA-induced dyskinesia is a debilitating effect of treating Parkinson's disease with this drug. New therapeutic approaches that prevent or attenuate this side effect are needed. EXPERIMENTAL APPROACH: Wistar adult male rats submitted to 6-hydroxydopamine-induced unilateral medial forebrain bundle lesion were treated with l-DOPA (p.o. 20 mg·kg-1 or s.c. 10 mg·kg-1 ) once a day for 14 days. After this period, we tested if doxycycline (40 mg·kg-1 , i.p.) and COL-3 (50 and 100 nmol, i.c.v.) could reverse l-DOPA-induced dyskinesia. In an additional experiment, doxycycline was administered together with l-DOPA to verify if it would prevent l-DOPA-induced dyskinesia development. KEY RESULTS: A single injection of doxycycline or COL-3 attenuated l-DOPA-induced dyskinesia. Co-treatment with doxycycline from the first day of l-DOPA suppressed the onset of dyskinesia. The improved motor response after l-DOPA was not affected by doxycycline or COL-3. Doxycycline treatment was associated with decreased immunoreactivity of FosB, COX-2, the astroglial protein GFAP and the microglial protein OX-42, which were elevated in the basal ganglia of rats exhibiting dyskinesia. Doxycycline decreased metalloproteinase-2/-9 activity, metalloproteinase-3 expression and ROS production. Metalloproteinase-2/-9 activity and production of ROS in the basal ganglia of dyskinetic rats showed a significant correlation with the intensity of dyskinesia. CONCLUSION AND IMPLICATIONS: The present study demonstrates the anti-dyskinetic potential of doxycycline and its analogue compound COL-3 in hemiparkinsonian rats. Given the long-established and safe clinical use of doxycycline, this study suggests that these drugs might be tested to reduce or prevent l-DOPA-induced dyskinesia in Parkinson's patients.


Asunto(s)
Antiparkinsonianos , Discinesia Inducida por Medicamentos , Levodopa , Animales , Cuerpo Estriado , Modelos Animales de Enfermedad , Doxiciclina , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Masculino , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 3 de la Matriz , Metaloproteinasa 9 de la Matriz , Oxidopamina , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Especies Reactivas de Oxígeno , Tetraciclinas
12.
Neurobiol Dis ; 151: 105256, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33429042

RESUMEN

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn). Doxycycline, a tetracyclic antibiotic shows neuroprotective effects, initially proposed to be due to its anti-inflammatory properties. More recently, an additional mechanism by which doxycycline may exert its neuroprotective effects has been proposed as it has been shown that it inhibits amyloid aggregation. Here, we studied the effects of doxycycline on aSyn aggregation in vivo, in vitro and in a cell free system using real-time quaking induced conversion (RT-QuiC). Using H4, SH-SY5Y and HEK293 cells, we found that doxycycline decreases the number and size of aSyn aggregates in cells. In addition, doxycycline inhibits the aggregation and seeding of recombinant aSyn, and attenuates the production of mitochondrial-derived reactive oxygen species. Finally, we found that doxycycline induces a cellular redistribution of aggregates in a C.elegans animal model of PD, an effect that is associated with a recovery of dopaminergic function. In summary, we provide strong evidence that doxycycline treatment may be an effective strategy against synucleinopathies.


Asunto(s)
Doxiciclina/farmacología , Fármacos Neuroprotectores/farmacología , Agregación Patológica de Proteínas/patología , Sinucleinopatías/patología , alfa-Sinucleína/efectos de los fármacos , Animales , Caenorhabditis elegans , Línea Celular , Humanos , Cuerpos de Inclusión/efectos de los fármacos , Cuerpos de Inclusión/metabolismo
13.
Sci Rep ; 10(1): 20258, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219264

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder for which only symptomatic treatments are available. Repurposing drugs that target α-synuclein aggregation, considered one of the main drivers of PD progression, could accelerate the development of disease-modifying therapies. In this work, we focused on chemically modified tetracycline 3 (CMT-3), a derivative with reduced antibiotic activity that crosses the blood-brain barrier and is pharmacologically safe. We found that CMT-3 inhibited α-synuclein amyloid aggregation and led to the formation of non-toxic molecular species, unlike minocycline. Furthermore, CMT-3 disassembled preformed α-synuclein amyloid fibrils into smaller fragments that were unable to seed in subsequent aggregation reactions. Most interestingly, disaggregated species were non-toxic and less inflammogenic on brain microglial cells. Finally, we modelled the interactions between CMT-3 and α-synuclein aggregates by molecular simulations. In this way, we propose a mechanism for fibril disassembly. Our results place CMT-3 as a potential disease modifier for PD and possibly other synucleinopathies.


Asunto(s)
Inflamación/inducido químicamente , Tetraciclinas/farmacología , alfa-Sinucleína/toxicidad , Reposicionamiento de Medicamentos , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Agregado de Proteínas , Tetraciclinas/uso terapéutico , alfa-Sinucleína/metabolismo
15.
Neurotoxicology ; 77: 205-215, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31991143

RESUMEN

Pesticide exposure is associated with cognitive and psychomotor disorders. Glyphosate-based herbicides (GlyBH) are among the most used agrochemicals, and inhalation of GlyBH sprays may arise from frequent aerial pulverizations. Previously, we described that intranasal (IN) administration of GlyBH in mice decreases locomotor activity, increases anxiety, and impairs recognition memory. Then, the aim of the present study was to investigate the mechanisms involved in GlyBH neurotoxicity after IN administration. Adult male CF-1 mice were exposed to GlyBH IN administration (equivalent to 50 mg/kg/day of Gly acid, 3 days a week, during 4 weeks). Total thiol content and the activity of the enzymes catalase, acetylcholinesterase and transaminases were evaluated in different brain areas. In addition, markers of the cholinergic and the nigrostriatal pathways, as well as of astrocytes were evaluated by fluorescence microscopy in coronal brain sections. The brain areas chosen for analysis were those seen to be affected in our previous study. GlyBH IN administration impaired the redox balance of the brain and modified the activities of enzymes involved in cholinergic and glutamatergic pathways. Moreover, GlyBH treatment decreased the number of cholinergic neurons in the medial septum as well as the expression of the α7-acetylcholine receptor in the hippocampus. Also, the number of astrocytes increased in the anterior olfactory nucleus of the exposed mice. Taken together, these disturbances may contribute to the neurobehavioural impairments reported previously by us after IN GlyBH administration in mice.


Asunto(s)
Acetilcolina/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Administración Intranasal , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Glicina/administración & dosificación , Glicina/toxicidad , Herbicidas/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Oxidación-Reducción , Núcleos Septales/efectos de los fármacos , Núcleos Septales/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Transaminasas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Glifosato
16.
Front Pharmacol ; 11: 617085, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510643

RESUMEN

Our present objective was to better characterize the mechanisms that regulate striatal neuroinflammation in mice developing L-DOPA-induced dyskinesia (LID). For that, we used 6-hydroxydopamine (6-OHDA)-lesioned mice rendered dyskinetic by repeated intraperitoneal injections of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and quantified ensuing neuroinflammatory changes in the dopamine-denervated dorsal striatum. LID development was associated with a prominent astrocytic response, and a more moderate microglial cell reaction restricted to this striatal area. The glial response was associated with elevations in two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1ß. Treatment with the phytocannabinoid cannabidiol and the transient receptor potential vanilloid-1 (TRPV-1) channel antagonist capsazepine diminished LID intensity and decreased TNF-α levels without impacting other inflammation markers. To possibly reproduce the neuroinflammatory component of LID, we exposed astrocyte and microglial cells in culture to candidate molecules that might operate as inflammatory cues during LID development, i.e., L-DOPA, dopamine, or glutamate. Neither L-DOPA nor dopamine produced an inflammatory response in glial cell cultures. However, glutamate enhanced TNF-α secretion and GFAP expression in astrocyte cultures and promoted Iba-1 expression in microglial cultures. Of interest, the antidyskinetic treatment with cannabidiol + capsazepine reduced TNF-α release in glutamate-activated astrocytes. TNF-α, on its own, promoted the synaptic release of glutamate in cortical neuronal cultures, whereas cannabidiol + capsazepine prevented this effect. Therefore, we may assume that the release of TNF-α by glutamate-activated astrocytes may contribute to LID by exacerbating corticostriatal glutamatergic inputs excitability and maintaining astrocytes in an activated state through a self-reinforcing mechanism.

17.
Glia ; 68(3): 561-573, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31647138

RESUMEN

We used mouse microglial cells in culture activated by lipopolysaccharide (LPS, 10 ng/ml) to study the anti-inflammatory potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis. Under LPS stimulation, CBD (1-10 µM) potently inhibited the release of prototypical proinflammatory cytokines (TNF-α and IL-1ß) and that of glutamate, a noncytokine mediator of inflammation. The effects of CBD were predominantly receptor-independent and only marginally blunted by blockade of CB2 receptors. We established that CBD inhibited a mechanism involving, sequentially, NADPH oxidase-mediated ROS production and NF-κB-dependent signaling events. In line with these observations, active concentrations of CBD demonstrated an intrinsic free-radical scavenging capacity in the cell-free DPPH assay. Of interest, CBD also prevented the rise in glucose uptake observed in microglial cells challenged with LPS, as did the inhibitor of NADPH oxidase apocynin and the inhibitor of IκB kinase-2, TPCA-1. This indicated that the capacity of CBD to prevent glucose uptake also contributed to its anti-inflammatory activity. Supporting this view, the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) mimicked the antioxidant/immunosuppressive effects of CBD. Interestingly, CBD and 2-DG, as well as apocynin and TPCA-1 caused a reduction in glucose-derived NADPH, a cofactor required for NADPH oxidase activation and ROS generation. These different observations suggest that CBD exerts its anti-inflammatory effects towards microglia through an intrinsic antioxidant effect, which is amplified through inhibition of glucose-dependent NADPH synthesis. These results also further confirm that CBD may have therapeutic utility in conditions where neuroinflammatory processes are prominent.


Asunto(s)
Cannabidiol/farmacología , Glucosa/metabolismo , Inflamación/prevención & control , Microglía/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Citocinas/farmacología , Proteínas I-kappa B/efectos de los fármacos , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Cells ; 8(8)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349736

RESUMEN

: Aggregated forms of the synaptic protein α-synuclein (αS) have been proposed to operate as a molecular trigger for microglial inflammatory processes and neurodegeneration in Parkinson´s disease. Here, we used brain microglial cell cultures activated by fibrillary forms of recombinant human αS to assess the anti-inflammatory and neuroprotective activities of the antibiotic rifampicin (Rif) and its autoxidation product rifampicin quinone (RifQ). Pretreatments with Rif and RifQ reduced the secretion of prototypical inflammatory cytokines (TNF-, IL-6) and the burst of oxidative stress in microglial cells activated with αS fibrillary aggregates. Note, however, that RifQ was constantly more efficacious than its parent compound in reducing microglial activation. We also established that the suppressive effects of Rif and RifQ on cytokine release was probably due to inhibition of both PI3K- and non-PI3K-dependent signaling events. The control of oxidative stress appeared, however, essentially dependent on PI3K inhibition. Of interest, we also showed that RifQ was more efficient than Rif in protecting neuronal cells from toxic factors secreted by microglia activated by αS fibrils. Overall, data with RifQ are promising enough to justify further studies to confirm the potential of this compound as an anti-parkinsionian drug.


Asunto(s)
Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Rifampin/análogos & derivados , Rifampin/farmacología , alfa-Sinucleína/metabolismo , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Modelos Biológicos , Estructura Molecular , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/metabolismo
19.
Neurotox Res ; 35(4): 981-986, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30798507

RESUMEN

Neurodegenerative diseases (NDs) are a group of chronic, progressive disorders characterized by the gradual loss of neurons that affect specific regions of the brain, which leads to deficits in specific functions (e.g., memory, movement, cognition). The mechanism that drives chronic progression of NDs remains elusive. Among the proposed underlying pathophysiological mechanisms, aggregation and accumulation of misfolded proteins and neuroinflammation have been credited to contribute to extensive neural loss. Therapeutic agents that confer neuroprotection by downregulating these shared characteristics could therefore have beneficial effects on a wide range of NDs. In this regard, a commonly used antibiotic, doxycycline (Doxy), has been shown to reduce the progression and severity of disease in different experimental models of neurodegeneration by counteracting these common features. This review will focus on the effects reported for Doxy regarding its neuroprotective properties, the "off-target" effects, thereby supporting its evaluation as a new therapeutic approach for diseases associated with a neurodegeneration.


Asunto(s)
Doxiciclina/administración & dosificación , Encefalitis/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Ensayos Clínicos como Asunto , Encefalitis/complicaciones , Humanos , Enfermedades Neurodegenerativas/complicaciones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico
20.
PLoS One ; 14(1): e0209573, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30608949

RESUMEN

Glycosaminoglycans (GAGs), including heparan sulfates and chondroitin sulfates, are major components of the extracellular matrix. Upon interacting with heparin binding growth factors (HBGF), GAGs participate to the maintaintenance of tissue homeostasis and contribute to self-healing. Although several processes regulated by HBGF are altered in Alzheimer's disease, it is unknown whether the brain GAG capacities to bind and regulate the function of HBGF or of other heparin binding proteins, as tau, are modified in this disease. Here, we show that total sulfated GAGs from hippocampus of Alzheimer's disease have altered capacities to bind and potentiate the activities of growth factors including FGF-2, VEGF, and BDNF while their capacity to bind to tau is remarkable increased. Alterations of GAG structures and capacities to interact with and regulate the activity of heparin binding proteins might contribute to impaired tissue homeostasis in the Alzheimer's disease brain.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas tau/fisiología , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Brasil , Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Unión Proteica , Lóbulo Temporal/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...