Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 505(7482): 239-43, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24291791

RESUMEN

The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.


Asunto(s)
Biocombustibles/provisión & distribución , Metabolismo de los Hidratos de Carbono , Etanol/metabolismo , Ingeniería Genética , Phaeophyceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alginatos/metabolismo , Anaerobiosis , Ascomicetos/genética , Ascomicetos/metabolismo , Biotecnología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Evolución Molecular , Fermentación , Prueba de Complementación Genética , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Manitol/metabolismo , Phaeophyceae/genética , Ácido Quínico/metabolismo , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Algas Marinas/genética , Algas Marinas/metabolismo , Ácidos Urónicos/metabolismo
2.
Science ; 335(6066): 308-13, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22267807

RESUMEN

Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).


Asunto(s)
Alginatos/metabolismo , Biocombustibles , Escherichia coli/genética , Etanol/metabolismo , Ingeniería Metabólica , Phaeophyceae/metabolismo , Algas Marinas/metabolismo , Vibrio/enzimología , Alginatos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Biomasa , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/metabolismo , Fermentación , Genes Bacterianos , Glucosa/metabolismo , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Ácido Láctico/metabolismo , Manitol/metabolismo , Redes y Vías Metabólicas , Sistemas de Lectura Abierta , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Vibrio/genética
3.
Genetics ; 179(4): 1933-44, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18689887

RESUMEN

Sirtuins are conserved proteins implicated in myriad key processes including gene control, aging, cell survival, metabolism, and DNA repair. In Saccharomyces cerevisiae, the sirtuin Silent information regulator 2 (Sir2) promotes silent chromatin formation, suppresses recombination between repeats, and inhibits senescence. We performed a genomewide screen for factors that negatively regulate Sir activity at a reporter gene placed immediately outside a silenced region. After linkage analysis, assessment of Sir dependency, and knockout tag verification, 40 loci were identified, including 20 that have not been previously described to regulate Sir. In addition to chromatin-associated factors known to prevent ectopic silencing (Bdf1, SAS-I complex, Rpd3L complex, Ku), we identified the Rtt109 DNA repair-associated histone H3 lysine 56 acetyltransferase as an anti-silencing factor. Our findings indicate that Rtt109 functions independently of its proposed effectors, the Rtt101 cullin, Mms1, and Mms22, and demonstrate unexpected interplay between H3K56 and H4K16 acetylation. The screen also identified subunits of mediator (Soh1, Srb2, and Srb5) and mRNA metabolism factors (Kem1, Ssd1), thus raising the possibility that weak silencing affects some aspect of mRNA structure. Finally, several factors connected to metabolism were identified. These include the PAS-domain metabolic sensor kinase Psk2, the mitochondrial homocysteine detoxification enzyme Lap3, and the Fe-S cluster protein maturase Isa2. We speculate that PAS kinase may integrate metabolic signals to control sirtuin activity.


Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Acetilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , ADN de Hongos/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Fenotipo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética
4.
Curr Opin Genet Dev ; 16(2): 119-24, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16503125

RESUMEN

Although many histone variants are specific to higher eukaryotes, the H2A variant H2A.Z has been conserved during eukaryotic evolution. Genetic studies have demonstrated roles for H2A.Z in antagonizing gene-silencing, chromosome stability and gene activation. Biochemical work has identified a conserved chromatin-remodeling complex responsible for H2A.Z deposition. Recent studies have shown that two H2A.Z nucleosomes flank a nucleosome-free region containing the transcription initiation site in promoters of both active and inactive genes in Saccharomyces cerevisiae. This chromatin pattern is generated through the action of a DNA deposition signal and a specific pattern of histone tail acetylation.


Asunto(s)
Cromatina/metabolismo , Variación Genética , Histonas/genética , Nucleosomas/genética , Animales , Histonas/metabolismo , Nucleosomas/metabolismo
5.
Cell ; 123(2): 233-48, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-16239142

RESUMEN

In S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread. We show that H2A.Z nucleosomes are found at promoter regions of nearly all genes in euchromatin. They generally occur as two positioned nucleosomes that flank a nucleosome-free region (NFR) that contains the transcription start site. Astonishingly, enrichment at 5' ends is observed not only at actively transcribed genes but also at inactive loci. Mutagenesis of a typical promoter revealed a 22 bp segment of DNA sufficient to program formation of a NFR flanked by two H2A.Z nucleosomes. This segment contains a binding site of the Myb-related protein Reb1 and an adjacent dT:dA tract. Efficient deposition of H2A.Z is further promoted by a specific pattern of histone H3 and H4 tail acetylation and the bromodomain protein Bdf1, a component of the Swr1 remodeling complex that deposits H2A.Z.


Asunto(s)
Eucromatina/genética , Genes Fúngicos , Variación Genética , Histonas/genética , Acetilación , Sustitución de Aminoácidos , Arginina/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Cromosomas , Codón Iniciador , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Intergénico/genética , ADN Intergénico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Heterocromatina/metabolismo , Histonas/metabolismo , Análisis por Micromatrices , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Cell ; 115(4): 389-99, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-14622594

RESUMEN

Developing new regulation of existing genes is likely a key mechanism by which organismal complexity arises in evolution. To examine plasticity of gene regulation over evolutionary timescales, we have determined the transcriptional circuit regulating mating type in the human fungal pathogen Candida albicans, and compared it to that of Saccharomyces cerevisiae. Since the two yeasts last shared an ancestor 100-800 million years ago, several major differences in circuitry have arisen. For example, a positive regulator of mating type was retained in C. albicans but lost in S. cerevisiae; this circuit branch was replaced by the modification of an existing negative regulator, thereby conserving the circuit output. We also characterize a tier of mating type transcriptional regulation that is present only in C. albicans, and likely results from the vastly different environmental selections imposed on the two yeasts--in this case, the pressure on C. albicans to survive in a mammalian host.


Asunto(s)
Candida albicans/genética , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Candida albicans/citología , División Celular , Genes Fúngicos/genética , Genes del Tipo Sexual de los Hongos , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...