Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 946: 174268, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925375

RESUMEN

Microplastic ingestion poses a significant concern for a plethora of marine organisms due to its widespread presence in marine ecosystems. Despite growing scientific interest, the effects on marine biota are not yet well understood. This study investigates the ingestion of microplastics (MPs) by mussels from various marine environments and assesses the associated effects that can be induced by MPs and associated toxic chemicals. Biomarkers of oxidative stress (catalase, lipid peroxidation), biotransformation (glutathione S-transferase), genotoxicity (micronuclei frequency) and neurotoxicity (acetylcholinesterase) were employed. Mussels, considered reliable bioindicators of MPs pollution, were sampled by hand from diverse locations under varied anthropogenic pressures, including a highly touristic Marine Protected Area (MPA) in the Ionian Sea, a mussel farm and a fish farm in the Aegean Sea. The results revealed the highest MP ingestion in mussels from the fish farm [0.21 ± 0.04 (SE) MPs/g or 0.63 ± 0.12 (SE) MPs/Ind.], likely due to plastic aquaculture equipment use. Stereoscopic observation revealed fibers, as the predominant shape of ingested MPs across all sites, and µFTIR polymer identification revealed the presence of various types, with polyethylene (PE) and polyamide (PA) being the most abundant. Significant physiological alterations in mussels related to MP ingestion levels were observed through biomarkers indicative of oxidative stress and biotransformation, as well as the Integrated Biomarker Response (IBR index). However, laboratory experiments with mussels exposed to controlled increasing PE concentrations for four weeks, did not show significant effects triggered by the PE ingestion, possibly indicating other environmental factors, such as contaminants from aquaculture environments, may influence biomarker levels in the field. Despite the observed effects, MP ingestion rates in mussels from the field were relatively low compared to other studies. Future research should continue to investigate the interactions between MPs and marine organisms in diverse environments to better understand and mitigate their impacts.

2.
Sci Rep ; 14(1): 9975, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693309

RESUMEN

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Asunto(s)
Clorofila A , Ecosistema , Fitoplancton , Estaciones del Año , Fitoplancton/crecimiento & desarrollo , Fitoplancton/fisiología , Mar Mediterráneo , Clorofila A/análisis , Clorofila A/metabolismo , Clorofila/análisis , Clorofila/metabolismo , Biomasa , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos
3.
J Geophys Res Oceans ; 127(4): e2021JC018195, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35859661

RESUMEN

We describe an approach to partition a vertical profile of chlorophyll-a concentration into contributions from two communities of phytoplankton: one (community 1) that resides principally in the turbulent mixed-layer of the upper ocean and is observable through satellite visible radiometry; the other (community 2) residing below the mixed-layer, in a stably stratified environment, hidden from the eyes of the satellite. The approach is tuned to a time-series of profiles from a Biogeochemical-Argo float in the northern Red Sea, selected as its location transitions from a deep mixed layer in winter (characteristic of vertically well-mixed systems) to a shallow mixed layer in the summer with a deep chlorophyll-a maximum (characteristic of vertically stratified systems). The approach is extended to reproduce profiles of particle backscattering, by deriving the chlorophyll-specific backscattering coefficients of the two communities and a background coefficient assumed to be dominated by non-algal particles in the region. Analysis of the float data reveals contrasting phenology of the two communities, with community 1 blooming in winter and 2 in summer, community 1 negatively correlated with epipelagic stratification, and 2 positively correlated. We observe a dynamic chlorophyll-specific backscattering coefficient for community 1 (stable for community 2), positively correlated with light in the mixed-layer, suggesting seasonal changes in photoacclimation and/or taxonomic composition within community 1. The approach has the potential for monitoring vertical changes in epipelagic biogeography and for combining satellite and ocean robotic data to yield a three-dimensional view of phytoplankton distribution.

4.
PLoS One ; 17(1): e0262247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34995337

RESUMEN

Currently, a significant amount of research is focused on detecting Marine Debris and assessing its spectral behaviour via remote sensing, ultimately aiming at new operational monitoring solutions. Here, we introduce a Marine Debris Archive (MARIDA), as a benchmark dataset for developing and evaluating Machine Learning (ML) algorithms capable of detecting Marine Debris. MARIDA is the first dataset based on the multispectral Sentinel-2 (S2) satellite data, which distinguishes Marine Debris from various marine features that co-exist, including Sargassum macroalgae, Ships, Natural Organic Material, Waves, Wakes, Foam, dissimilar water types (i.e., Clear, Turbid Water, Sediment-Laden Water, Shallow Water), and Clouds. We provide annotations (georeferenced polygons/ pixels) from verified plastic debris events in several geographical regions globally, during different seasons, years and sea state conditions. A detailed spectral and statistical analysis of the MARIDA dataset is presented along with well-established ML baselines for weakly supervised semantic segmentation and multi-label classification tasks. MARIDA is an open-access dataset which enables the research community to explore the spectral behaviour of certain floating materials, sea state features and water types, to develop and evaluate Marine Debris detection solutions based on artificial intelligence and deep learning architectures, as well as satellite pre-processing pipelines.


Asunto(s)
Inteligencia Artificial , Benchmarking , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Tecnología de Sensores Remotos/métodos , Residuos/análisis , Estaciones del Año
5.
Environ Microbiol ; 24(3): 1012-1034, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34499795

RESUMEN

Global warming affects the aquatic ecosystems, accelerating pathogenic microorganisms' and toxic microalgae's growth and spread in marine habitats, and in bivalve molluscs. New parasite invasions are directly linked to oceanic warming. Consumption of pathogen-infected molluscs impacts human health at different rates, depending, inter alia, on the bacteria taxa. It is therefore necessary to monitor microbiological and chemical contamination of food. Many global cases of poisoning from bivalve consumption can be traced back to Mediterranean regions. This article aims to examine the marine bivalve's infestation rate within the scope of climate change, as well as to evaluate the risk posed by climate change to bivalve welfare and public health. Biological and climatic data literature review was performed from international scientific sources, Greek authorities and State organizations. Focusing on Greek aquaculture and bivalve fisheries, high-risk index pathogenic parasites and microalgae were observed during summer months, particularly in Thermaikos Gulf. Considering the climate models that predict further temperature increases, it seems that marine organisms will be subjected in the long term to higher temperatures. Due to the positive linkage between temperature and microbial load, the marine areas most affected by this phenomenon are characterized as 'high risk' for consumer health.


Asunto(s)
Bivalvos , Cambio Climático , Animales , Ecosistema , Grecia , Humanos , Océanos y Mares
6.
J Anim Ecol ; 90(9): 2122-2134, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34013517

RESUMEN

An increasing number of studies have been examining the functional configuration of biological communities or ecosystems using biological traits. Here, we investigated the temporal dynamics and resilience of the traits composition in Mediterranean fisheries landings over 31 years (1985-2015). We transcribed the FAO Mediterranean landings dataset for 101 marine species into a dataset of 23 traits related to the life cycle, distribution, ecology and behaviour. Mediterranean mean Sea Surface Temperature (SST) was evaluated as a potential driver of the traits composition. Trait dynamics were evaluated both individually and holistically by developing an Integrated Traits Resilience Assessment (ITRA). ITRA is a variation of the Integrated Resilience Assessment (IRA), a method to infer resilience dynamics and build stability landscapes of complex natural systems. Changes in landings trait dynamics were documented both for individual traits and for the entire traits 'system', and a relevant regime shift was detected in the second half of the 1990s. The traits system switched to higher optimal temperature, more summer spawning, shorter life span, smaller maximum size, shallower optimal depth and planktivorous diet. This shift was found to be a lagged discontinuous response to sea warming, which gradually eroded the resilience of the original state of the traits system, leading it into a new basin of attraction. The inclusion of ecological/response traits (related to environmental preferences) in our analyses indicates potential mechanisms that explain the observed shift, while changes in functional/effect traits indicate potential impacts on ecosystem functioning. Our findings suggest that changes in the Mediterranean ecosystems are evidently larger than previously thought, with profound implications for the management of this highly impacted sea. ​.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Peces , Mar Mediterráneo , Fenotipo , Temperatura
7.
Open Res Eur ; 1: 117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37645140

RESUMEN

Lagrangian analysis is becoming increasingly important to better understand the ocean's biological and biogeochemical cycles. Yet, biologists and chemists often lack the technical skills required to set up such analyses. Here, we present a new product of pre-computed ocean Lagrangian trajectories (OLTraj) targeting non-expert users, and demonstrate how to use it by means of worked examples. OLTraj is based on satellite-derived geostrophic currents, which allows one to directly compare it with other in-situ or satellite products. We anticipate that OLTraj will foster a new interest in Lagrangian applications in ocean biology and biogeochemistry.

8.
Proc Natl Acad Sci U S A ; 117(41): 25378-25385, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32958634

RESUMEN

Our study reveals a hitherto overlooked ecological threat of climate change. Studies of warming events in the ocean have typically focused on the events' maximum temperature and duration as the cause of devastating disturbances in coral reefs, kelp forests, and rocky shores. In this study, however, we found that the rate of onset (Ronset), rather than the peak, was the likely trigger of mass mortality of coral reef fishes in the Red Sea. Following a steep rise in water temperature (4.2 °C in 2.5 d), thermally stressed fish belonging to dozens of species became fatally infected by Streptococcus iniae Piscivores and benthivores were disproportionately impacted whereas zooplanktivores were spared. Mortality rates peaked 2 wk later, coinciding with a second warming event with extreme Ronset The epizootic lasted ∼2 mo, extending beyond the warming events through the consumption of pathogen-laden carcasses by uninfected fish. The warming was widespread, with an evident decline in wind speed, barometric pressure, and latent heat flux. A reassessment of past reports suggests that steep Ronset was also the probable trigger of mass mortalities of wild fish elsewhere. If the ongoing increase in the frequency and intensity of marine heat waves is associated with a corresponding increase in the frequency of extreme Ronset, calamities inflicted on coral reefs by the warming oceans may extend far beyond coral bleaching.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Enfermedades de los Peces/mortalidad , Peces , Infecciones Estreptocócicas/veterinaria , Animales , Antozoos , Brotes de Enfermedades/veterinaria , Enfermedades de los Peces/microbiología , Respuesta al Choque Térmico , Océano Índico , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/mortalidad , Streptococcus iniae/aislamiento & purificación , Factores de Tiempo
9.
Sci Rep ; 10(1): 13247, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764628

RESUMEN

Small pelagic fisheries provide food security, livelihood support and economic stability for East African coastal communities-a region of least developed countries. Using remotely- sensed and field observations together with modelling, we address the biophysical drivers of this important resource. We show that annual variations of fisheries yield parallel those of chlorophyll-a (an index of phytoplankton biomass). While enhanced phytoplankton biomass during the Northeast monsoon is triggered by wind-driven upwelling, during the Southeast monsoon, it is driven by two current induced mechanisms: coastal "dynamic uplift" upwelling; and westward advection of nutrients. This biological response to the Southeast monsoon is greater than that to the Northeast monsoon. For years unaffected by strong El-Niño/La-Niña events, the Southeast monsoon wind strength over the south tropical Indian Ocean is the main driver of year-to-year variability. This has important implications for the predictability of fisheries yield, its response to climate change, policy and resource management.

10.
Sci Rep ; 9(1): 16598, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719628

RESUMEN

The southern Red Sea is genetically distinct from the rest of the basin; yet the reasons responsible for this genetic separation remain unclear. Connectivity is a vital process for the exchange of individuals and genes among geographically separated populations, and is necessary for maintaining biodiversity and resilience in coral reef ecosystems. Here, using long-term, high-resolution, 3-D backward particle tracking simulations, we investigate the physical connectivity of coral reefs in the southern Red Sea with neighbouring regions. Overall, the simulation results reveal that the southern Red Sea coral reefs are more physically connected with regions in the Indian Ocean (e.g., the Gulf of Aden) than with the northern part of the basin. The identified connectivity exhibits a distinct monsoon-related seasonality. Though beyond the country boundaries, relatively remote regions of the Indian Ocean may have a substantial impact on the southern Red Sea coral reef regions, and this should be taken into consideration when establishing conservation strategies for these vulnerable biodiversity hot-spots.


Asunto(s)
Antozoos/fisiología , Biodiversidad , Simulación por Computador , Arrecifes de Coral , Ecosistema , Animales , Océano Índico , Arabia Saudita
11.
Front Microbiol ; 10: 1964, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551946

RESUMEN

Phytoplankton biomass and size structure are recognized as key ecological indicators. With the aim to quantify the relationship between these two ecological indicators in tropical waters and understand controlling factors, we analyzed the total chlorophyll-a concentration, a measure of phytoplankton biomass, and its partitioning into three size classes of phytoplankton, using a series of observations collected at coastal sites in the central Red Sea. Over a period of 4 years, measurements of flow cytometry, size-fractionated chlorophyll-a concentration, and physical-chemical variables were collected near Thuwal in Saudi Arabia. We fitted a three-component model to the size-fractionated chlorophyll-a data to quantify the relationship between total chlorophyll and that in three size classes of phytoplankton [pico- (<2 µm), nano- (2-20 µm) and micro-phytoplankton (>20 µm)]. The model has an advantage over other more empirical methods in that its parameters are interpretable, expressed as the maximum chlorophyll-a concentration of small phytoplankton (pico- and combined pico-nanophytoplankton, C p m and C p , n m , respectively) and the fractional contribution of these two size classes to total chlorophyll-a as it tends to zero (D p and D p,n ). Residuals between the model and the data (model minus data) were compared with a range of other environmental variables available in the dataset. Residuals in pico- and combined pico-nanophytoplankton fractions of total chlorophyll-a were significantly correlated with water temperature (positively) and picoeukaryote cell number (negatively). We conducted a running fit of the model with increasing temperature and found a negative relationship between temperature and parameters C p m and C p , n m and a positive relationship between temperature and parameters D p and D p,n . By harnessing the relative red fluorescence of the flow cytometric data, we show that picoeukaryotes, which are higher in cell number in winter (cold) than summer (warm), contain higher chlorophyll per cell than other picophytoplankton and are slightly larger in size, possibly explaining the temperature shift in model parameters, though further evidence is needed to substantiate this finding. Our results emphasize the importance of knowing the water temperature and taxonomic composition of phytoplankton within each size class when understanding their relative contribution to total chlorophyll. Furthermore, our results have implications for the development of algorithms for inferring size-fractionated chlorophyll from satellite data, and for how the partitioning of total chlorophyll into the three size classes may change in a future ocean.

12.
Glob Chang Biol ; 25(7): 2338-2351, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30974020

RESUMEN

As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susceptible to bleaching, using the Red Sea as a model system. Red Sea corals are exceptionally heat-resistant, yet bleaching events have increased in frequency. By applying a strict definition of MHWs on >30 year satellite-derived sea surface temperature observations (1985-2015), we provide an atlas of MHW hotspots over the Red Sea coral reef zones, which includes all MHWs that caused major coral bleaching. We found that: (a) if tuned to a specific set of conditions, MHWs identify all areas where coral bleaching has previously been reported; (b) those conditions extended farther and occurred more often than bleaching was reported; and (c) an emergent pattern of extreme warming events is evident in the northern Red Sea (since 1998), a region until now thought to be a thermal refuge for corals. We argue that bleaching in the Red Sea may be vastly underrepresented. Additionally, although northern Red Sea corals exhibit remarkably high thermal resistance, the rapidly rising incidence of MHWs of high intensity indicates this region may not remain a thermal refuge much longer. As our regionally tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, we propose that this approach could be used to reveal bleaching-prone regions in other data-limited tropical regions. It may thus prove a highly valuable tool for policymakers to optimize the sustainable management of coastal economic zones.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Ecosistema , Océano Índico , Temperatura
13.
PLoS One ; 14(4): e0215463, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30990831

RESUMEN

Harmful Algal Blooms (HABs) are of global concern, as their presence is often associated with socio-economic and environmental issues including impacts on public health, aquaculture and fisheries. Therefore, monitoring the occurrence and succession of HABs is fundamental for managing coastal regions around the world. Yet, due to the lack of adequate in situ measurements, the detection of HABs in coastal marine ecosystems remains challenging. Sensors on-board satellite platforms have sampled the Earth synoptically for decades, offering an alternative, cost-effective approach to routinely detect and monitor phytoplankton. The Red Sea, a large marine ecosystem characterised by extensive coral reefs, high levels of biodiversity and endemism, and a growing aquaculture industry, is one such region where knowledge of HABs is limited. Here, using high-resolution satellite remote sensing observations (1km, MODIS-Aqua) and a second-order derivative approach, in conjunction with available in situ datasets, we investigate for the first time the capability of a remote sensing model to detect and monitor HABs in the Red Sea. The model is able to successfully detect and generate maps of HABs associated with different phytoplankton functional types, matching concurrent in situ data remarkably well. We also acknowledge the limitations of using a remote-sensing based approach and show that regardless of a HAB's spatial coverage, the model is only capable of detecting the presence of a HAB when the Chl-a concentrations exceed a minimum value of ~ 1 mg m-3. Despite the difficulties in detecting HABs at lower concentrations, and identifying species toxicity levels (only possible through in situ measurements), the proposed method has the potential to map the reported spatial distribution of several HAB species over the last two decades. Such information is essential for the regional economy (i.e., aquaculture, fisheries & tourism), and will support the management and sustainability of the Red Sea's coastal economic zone.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Eutrofización/fisiología , Modelos Biológicos , Fitoplancton/crecimiento & desarrollo , Acuicultura , Océano Índico
14.
Sci Rep ; 9(1): 674, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679755

RESUMEN

The timing of phytoplankton growth (phenology) in tropical oceans is a crucial factor influencing the survival rates of higher trophic levels, food web structure and the functioning of coral reef ecosystems. Phytoplankton phenology is thus categorised as an 'ecosystem indicator', which can be utilised to assess ecosystem health in response to environmental and climatic perturbations. Ocean-colour remote sensing is currently the only technique providing global, long-term, synoptic estimates of phenology. However, due to limited available in situ datasets, studies dedicated to the validation of satellite-derived phenology metrics are sparse. The recent development of autonomous oceanographic observation platforms provides an opportunity to bridge this gap. Here, we use satellite-derived surface chlorophyll-a (Chl-a) observations, in conjunction with a Biogeochemical-Argo dataset, to assess the capability of remote sensing to estimate phytoplankton phenology metrics in the northern Red Sea - a typical tropical marine ecosystem. We find that phenology metrics derived from both contemporary platforms match with a high degree of precision (within the same 5-day period). The remotely-sensed surface signatures reflect the overall water column dynamics and successfully capture Chl-a variability related to convective mixing. Our findings offer important insights into the capability of remote sensing for monitoring food availability in tropical marine ecosystems, and support the use of satellite-derived phenology as an ecosystem indicator for marine management strategies in regions with limited data availability.


Asunto(s)
Clorofila A , Fitoplancton/fisiología , Tecnología de Sensores Remotos/métodos , Bases de Datos Factuales , Monitoreo del Ambiente/métodos , Océano Índico , Imágenes Satelitales , Estaciones del Año , Clima Tropical
15.
Sci Rep ; 8(1): 2240, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396537

RESUMEN

In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.


Asunto(s)
Biomasa , Cambio Climático , Fitoplancton/crecimiento & desarrollo , Biodiversidad , Clima , Ecosistema , Océano Índico , Nave Espacial , Temperatura
16.
Sci Rep ; 7(1): 13647, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057946

RESUMEN

Complex natural systems, spanning from individuals and populations to ecosystems and social-ecological systems, often exhibit abrupt reorganizations in response to changing stressors, known as regime shifts or critical transitions. Theory suggests that such systems feature folded stability landscapes with fluctuating resilience, fold-bifurcations, and alternate basins of attraction. However, the implementation of such features to elucidate response mechanisms in an empirical context is scarce, due to the lack of generic approaches to quantify resilience dynamics in individual natural systems. Here, we introduce an Integrated Resilience Assessment (IRA) framework: a three-step analytical process to assess resilience and construct stability landscapes of empirical systems. The proposed framework involves a multivariate analysis to estimate holistic system indicator variables, non-additive modelling to estimate alternate attractors, and a quantitative resilience assessment to scale stability landscapes. We implement this framework to investigate the temporal development of the Mediterranean marine communities in response to sea warming during 1985-2013, using fisheries landings data. Our analysis revealed a nonlinear tropicalisation of the Mediterranean Sea, expressed as abrupt shifts to regimes dominated by thermophilic species. The approach exemplified here for the Mediterranean Sea, revealing previously unknown resilience dynamics driven by climate forcing, can elucidate resilience and shifts in other complex systems.


Asunto(s)
Biodiversidad , Mar Mediterráneo , Animales , Cambio Climático , Modelos Biológicos , Análisis Multivariante , Dinámicas no Lineales , Factores de Tiempo
17.
Sci Rep ; 7(1): 9338, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839286

RESUMEN

Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.


Asunto(s)
Fenómenos Biofísicos , Arrecifes de Coral , Ecosistema , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos/métodos , Animales , Flujo Génico , Océano Índico , Nave Espacial , Análisis Espacial
18.
PLoS One ; 11(12): e0168440, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28006006

RESUMEN

Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)-the Ocean Color Climate Change Initiative (OC-CCI)-has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin's shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms.


Asunto(s)
Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Agua de Mar/química , Agua/química , Océano Índico , Yemen
19.
Glob Chang Biol ; 22(2): 604-12, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26386263

RESUMEN

Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.


Asunto(s)
Cambio Climático , Fitoplancton , Animales , Océano Atlántico , Copépodos , Viento , Zooplancton
20.
Sci Rep ; 5: 11240, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26062783

RESUMEN

Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.


Asunto(s)
Eutrofización/fisiología , Fitoplancton/crecimiento & desarrollo , Océano Índico , Estaciones del Año , Agua de Mar/química , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...