Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 23: 711-722, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38292474

RESUMEN

Variant peptides resulting from single nucleotide polymorphisms (SNPs) can lead to aberrant protein functions and have translational potential for disease diagnosis and personalized therapy. Variant peptides detected by proteogenomics are fraught with high number of false positives, but there is no uniform and comprehensive approach to assess variant quality across analysis pipelines. Despite class-specific FDR along with ad-hoc filters, the problem is far from solved. These protocols are typically manual and tedious, and thus not uniform across labs. We demonstrate that variant peptide rescoring, integrated with intensity, variant event information and search result features, allows better discrimination of correct variant peptides. Implemented into PgxSAVy - a tool for quality control of variant peptides, this method can tackle the high rate of false positives. PgxSAVy provides a rigorous framework for quality control and annotations of variant peptides on the basis of (i) variant quality, (ii) isobaric masses, and (iii) disease annotation. PgxSAVy demonstrated high accuracy by identifying true variants with 98.43% accuracy on simulated data. Large-scale proteogenomic reanalysis of ∼2.8 million spectra (PXD004010 and PXD001468) resulted in 12,705 variant peptide spectrum matches (PSMs), of which PgxSAVy evaluated 3028 (23.8%), 1409 (11.1%) and 8268 (65.1%) as confident, semi-confident and doubtful respectively. PgxSAVy also annotates the variants based on their pathogenicity and provides support for assisted manual validation. The analysis of proteins carrying variants can provide fine granularity in discovering important pathways. PgxSAVy will advance personalized medicine by providing a comprehensive framework for quality control and prioritization of proteogenomics variants. PgxSAVy is freely available at https://pgxsavy.igib.res.in/ as a webserver and https://github.com/anuragraj/PgxSAVy as a stand-alone tool.

2.
Biomolecules ; 12(5)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35625636

RESUMEN

Lipid compositions of cells, tissues, and bio-fluids are complex, with varying concentrations and structural diversity making their identification challenging. Newer methods for comprehensive analysis of lipids are thus necessary. Herein, we propose a targeted-mass spectrometry based lipidomics screening method using a combination of variable retention time window and relative dwell time weightage. Using this method, we identified more than 1000 lipid species within 24-min. The limit of detection varied from the femtomolar to the nanomolar range. About 883 lipid species were detected with a coefficient of variance <30%. We used this method to identify plasma lipids altered due to vitamin B12 deficiency and found a total of 18 lipid species to be altered. Some of the lipid species with ω-6 fatty acid chains were found to be significantly increased while ω-3 decreased in vitamin B12 deficient samples. This method enables rapid screening of a large number of lipid species in a single experiment and would substantially advance our understanding of the role of lipids in biological processes.


Asunto(s)
Ácidos Grasos Omega-3 , Lipidómica , Lípidos/análisis , Espectrometría de Masas/métodos , Vitaminas
3.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35534181

RESUMEN

Proteogenomics refers to the integrated analysis of the genome and proteome that leverages mass-spectrometry (MS)-based proteomics data to improve genome annotations, understand gene expression control through proteoforms and find sequence variants to develop novel insights for disease classification and therapeutic strategies. However, proteogenomic studies often suffer from reduced sensitivity and specificity due to inflated database size. To control the error rates, proteogenomics depends on the target-decoy search strategy, the de-facto method for false discovery rate (FDR) estimation in proteomics. The proteogenomic databases constructed from three- or six-frame nucleotide database translation not only increase the search space and compute-time but also violate the equivalence of target and decoy databases. These searches result in poorer separation between target and decoy scores, leading to stringent FDR thresholds. Understanding these factors and applying modified strategies such as two-pass database search or peptide-class-specific FDR can result in a better interpretation of MS data without introducing additional statistical biases. Based on these considerations, a user can interpret the proteogenomics results appropriately and control false positives and negatives in a more informed manner. In this review, first, we briefly discuss the proteogenomic workflows and limitations in database construction, followed by various considerations that can influence potential novel discoveries in a proteogenomic study. We conclude with suggestions to counter these challenges for better proteogenomic data interpretation.


Asunto(s)
Proteogenómica , Bases de Datos de Proteínas , Nucleótidos , Péptidos/química , Proteogenómica/métodos , Proteoma , Proteómica/métodos
4.
Int J Chron Obstruct Pulmon Dis ; 16: 2203-2215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349506

RESUMEN

Background: Chronic mucous hypersecretion (CMH or chronic bronchitis) per se or when associated with chronic inflammatory airway diseases such as asthma or chronic obstructive pulmonary disease (COPD) has several adverse clinical consequences. The sputum fluid phase has several candidate proteins including mucins which have the potential of being therapeutic targets, but has not yet been explored in-depth. This study aimed at exploring the profile of sputum proteins in various airway diseases. Methods: Sputum from thirty-one patients with various airway diseases was collected and the fluid phase analyzed by LC-MS/MS and subsequently by sequential window acquisition of all theoretical fragments ion spectra (SWATH) (n = 15) for protein quantitation. Hierarchical clustering and functional grouping were performed. Results: A total of 185 proteins were quantitated by SWATH of which 21 proteins were identified which could distinguish between the clinical phenotypes by hierarchical clustering. Functional protein clustering revealed 4 groups: those that are inflammation related, oxidative stress related, mucin related and a cytoskeletal and calcium related group. The levels of eight proteins (Azurocidin1, Neutrophil defensin 3, Lactotransferrin, Calmodulin 3, Coronin1A, Mucin 5B, Mucin 5AC and BPI fold containing family B1) were significantly altered (relative to mean) in exacerbator prone subjects compared to nonexacerbators. Another simple but useful metric which emerged from this study was total protein concentration in sputum which was significantly higher in frequent exacerbators. Conclusion: Sputum proteins can detect the various airway disease clinical phenotypes. Total protein concentration and eight other proteins are biomarkers for frequent exacerbators. The clinical and therapeutic implications of the functional groups of proteins need further evaluation.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Esputo , Biomarcadores , Cromatografía Liquida , Humanos , Proyectos Piloto , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Espectrometría de Masas en Tándem
5.
J Proteins Proteom ; 11(3): 159-165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132628

RESUMEN

In the last few months, there has been a global catastrophic outbreak of severe acute respiratory syndrome disease caused by the novel coronavirus SARS-CoV-2 affecting millions of people worldwide. Early diagnosis and isolation are key to contain the rapid spread of the virus. Towards this goal, we report a simple, sensitive and rapid method to detect the virus using a targeted mass spectrometric approach, which can directly detect the presence of virus from naso-oropharyngeal swabs. Using a multiple reaction monitoring we can detect the presence of two peptides specific to SARS-CoV-2 in a 2.3 min gradient run with 100% specificity and 90.5% sensitivity when compared to RT-PCR. Importantly, we further show that these peptides could be detected even in the patients who have recovered from the symptoms and have tested negative for the virus by RT-PCR highlighting the sensitivity of the technique. This method has the translational potential of in terms of the rapid diagnostics of symptomatic and asymptomatic COVID-19 and can augment current methods available for diagnosis of SARS-CoV-2.

6.
Sci Rep ; 10(1): 1368, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992760

RESUMEN

Fusion transcripts can contribute to diversity of molecular networks in the human cortex. In this study, we explored the occurrence of fusion transcripts in normal human cortex along with single neurons and astrocytes. We identified 1305 non-redundant fusion events from 388 transcriptomes representing 59 human cortices and 329 single cells. Our results indicate while the majority of fusion transcripts in human cortex are intra-chromosomal (85%), events found in single neurons and astrocytes were primarily inter-chromosomal (80%). The number of fusions in single neurons was significantly higher than that in single astrocytes (p < 0.05), indicating fusion as a possible contributor towards transcriptome diversity in neuronal cells. The identified fusions were largely private and 4 specific recurring events were found both in cortex and in single neurons but not in astrocytes. We found a significant increase in the number of fusion transcripts in human brain with increasing age both in single cells and whole cortex (p < 0.0005 and < 0.005, respectively). This is likely one of the many possible contributors for the inherent plasticity of the adult brain. The fusion transcripts in fetal brain were enriched for genes for long-term depression; while those in adult brain involved genes enriched for long-term potentiation pathways. Our findings demonstrate fusion transcripts are naturally occurring phenomenon spanning across the health-disease continuum, and likely contribute to the diverse molecular network of human brain.


Asunto(s)
Envejecimiento/fisiología , Astrocitos/metabolismo , Lóbulo Frontal/metabolismo , Sustancia Gris/metabolismo , Neuronas/metabolismo , ARN Mensajero/biosíntesis , Transcriptoma/fisiología , Adulto , Astrocitos/citología , Femenino , Lóbulo Frontal/citología , Sustancia Gris/citología , Humanos , Recién Nacido , Potenciación a Largo Plazo/fisiología , Masculino , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA