Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(23): e2400844, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613834

RESUMEN

Scaling in insect wings is a complex phenomenon that seems pivotal in maintaining wing functionality. In this study, the relationship between wing size and the size, location, and shape of wing cells in dragonflies and damselflies (Odonata) is investigated, aiming to address the question of how these factors are interconnected. To this end, WingGram, the recently developed computer-vision-based software, is used to extract the geometric features of wing cells of 389 dragonflies and damselfly wings from 197 species and 16 families. It has been found that the cell length of the wings does not depend on the wing size. Despite the wide variation in wing length (8.42 to 56.5 mm) and cell length (0.1 to 8.5 mm), over 80% of the cells had a length ranging from 0.5 to 1.5 mm, which was previously identified as the critical crack length of the membrane of locust wings. An isometric scaling of cells is also observed with maximum size in each wing, which increased as the size increased. Smaller cells tended to be more circular than larger cells. The results have implications for bio-mimetics, inspiring new materials and designs for artificial wings with potential applications in aerospace engineering and robotics.


Asunto(s)
Evolución Biológica , Odonata , Alas de Animales , Alas de Animales/anatomía & histología , Animales , Odonata/anatomía & histología , Vuelo Animal/fisiología
2.
Interface Focus ; 14(2): 20230060, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618231

RESUMEN

Presenting a novel framework for sustainable and regenerative design and development is a fundamental future need. Here we argue that a new framework, referred to as complexity biomechanics, which can be used for holistic analysis and understanding of natural mechanical systems, is key to fulfilling this need. We also present a roadmap for the design and development of intelligent and complex engineering materials, mechanisms, structures, systems, and processes capable of automatic adaptation and self-organization in response to ever-changing environments. We apply complexity biomechanics to elucidate how the different structural components of a complex biological system as dragonfly wings, from ultrastructure of the cuticle, the constituting bio-composite material of the wing, to higher structural levels, collaboratively contribute to the functionality of the entire wing system. This framework not only proposes a paradigm shift in understanding and drawing inspiration from natural systems but also holds potential applications in various domains, including materials science and engineering, biomechanics, biomimetics, bionics, and engineering biology.

3.
Biomimetics (Basel) ; 8(7)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37999165

RESUMEN

The stability of the body during locomotion is a fundamental requirement for walking animals. The mechanisms that coordinate leg movement patterns are even more complex at water-air interfaces. Water striders are agile creatures on the water surface, but they can be vulnerable to leg damage, which can impair their movement. One can assume the presence of certain compensatory biomechanical factors that are involved in the maintenance of postural balance lost after an amputation. Here, we studied changes in load distribution among the legs and assessed the effects of amputation on the locomotory behavior and postural defects that may increase the risk of locomotion failure. Apparently, amputees recover a stable posture by applying leg position modifications (e.g., widening the stance) and by load redistribution to the remaining legs. Water striders showed steering failure after amputation in all cases. Amputations affected locomotion by (1) altering motion features (e.g., shorter swing duration of midlegs), (2) functional constraints on legs, (3) shorter travelled distances, and (4) stronger deviations in the locomotion path. The legs functionally interact with each other, and removal of one leg has detrimental effects on the others. This research may assist the bioinspired design of aquatic robots.

4.
J R Soc Interface ; 20(208): 20230447, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37989230

RESUMEN

Enhanced attachment ability is common in plants on islands to avoid potential fatal passive dispersal. However, whether island insects also have increased attachment ability remains unclear. Here we measured the attachment of a flightless weevil, Pachyrhynchus sarcitis kotoensis, from tropical islands, and compared it with documented arthropods from the mainland. We examined the morphology and material gradient of its attachment devices to identify the specific adaptive modifications for attachment. We find that the weevil has much stronger attachment force and higher safety factor than previously studied arthropods, regardless of body size and substrate roughness. This probably results from the specific flexible bases of the adhesive setae on the third footpad of the legs. This softer material on the setal base has not been reported hitherto and we suggest that it acts as a flexible hinge to form intimate contact to substrate more effectively. By contrast, no morphological difference in tarsomeres and setae between the weevil and other beetles is observed. Our results show the remarkably strong attachment of an island insect and highlights the potential adaptive benefits of strong attachment in windy island environment. The unique soft bases of the adhesive hairs may inspire the development of strong biomimetic adhesives.


Asunto(s)
Escarabajos , Gorgojos , Animales , Escarabajos/anatomía & histología , Insectos , Islas
5.
Commun Biol ; 6(1): 853, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591993

RESUMEN

Insect wings are adaptive structures that automatically respond to flight forces, surpassing even cutting-edge engineering shape-morphing systems. A widely accepted but not yet explicitly tested hypothesis is that a 3D component in the wing's proximal region, known as basal complex, determines the quality of wing shape changes in flight. Through our study, we validate this hypothesis, demonstrating that the basal complex plays a crucial role in both the quality and quantity of wing deformations. Systematic variations of geometric parameters of the basal complex in a set of numerical models suggest that the wings have undergone adaptations to reach maximum camber under loading. Inspired by the design of the basal complex, we develop a shape-morphing mechanism that can facilitate the shape change of morphing blades for wind turbines. This research enhances our understanding of insect wing biomechanics and provides insights for the development of simplified engineering shape-morphing systems.


Asunto(s)
Aclimatación , Ingeniería , Animales , Fenómenos Biomecánicos
6.
J Exp Biol ; 226(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36896845

RESUMEN

Asteraceae, one of the largest flowering plant families, are adapted to a vast range of ecological niches. Their adaptability is partially based on their strong ability to reproduce. The initial, yet challenging, step for the reproduction of animal-pollinated plants is to transport pollen to flower-visiting pollinators. We adopted Hypochaeris radicata as a model species to investigate the functional morphology of the typical floral feature of Asteraceae, a pollen-bearing style. Using quantitative experiments and numerical simulations, here we show that the pollen-bearing style can serve as a ballistic lever for catapulting pollen grains to pollinators. This can potentially be a pollen dispersal strategy to propel pollen to safe sites on pollinators' bodies, which are beyond the physical reach of the styles. Our results suggest that the specific morphology of the floret and the pollen adhesion avoid pollen waste by catapulting pollen within a specific range equal to the size of a flowerhead. The insights into the functional floral oscillation may shed light on the superficially unremarkable, but ubiquitous functional floral design of Asteraceae.


Asunto(s)
Asteraceae , Animales , Polinización , Reproducción , Polen , Plantas , Flores
7.
J R Soc Interface ; 20(198): 20220757, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628530

RESUMEN

Geometry and material are two key factors that determine the functionality of mechanical elements under a specific boundary condition. Optimum combinations of these factors fulfil desired mechanical behaviour. By exploring biological systems, we find widespread spiral-shaped mechanical elements with various combinations of geometries and material properties functioning under different boundary conditions and load cases. Although these spirals work towards a wide range of goals, some of them are used as nature's solution to compactify highly extensible prolonged structures. Characterizing the principles underlying the functionality of these structures, here we profited from the coiling-uncoiling behaviour and easy adjustability of logarithmic spirals to design a pre-programmable compliant joint. Using the finite-element method, we developed a simple model of the joint and investigated the influence of design variables on its geometry and mechanical behaviour. Our results show that the design variables give us a great possibility to tune the response of the joint and reach a high level of passive control on its behaviour. Using 3D printing and mechanical testing, we replicated the numerical simulations and illustrated the application of the joint in practice. The simplicity, pre-programmability and predictable response of our double-spiral design suggest that it provides an efficient solution for a wide range of engineering applications, such as articulated robotic systems and modular metamaterials.

8.
Soft Robot ; 10(3): 636-646, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36629865

RESUMEN

Cable-driven continuum robots with hyper-redundant deformable backbones show great promise in applications, such as inspection in unstructured environments, where traditional rigid robots with discrete links and joints fail to operate. However, the motion of existing continuum robots is still constrained by their homogeneous backbones, and limited to environments with modest geometrical complexity. In this study, inspired by highly deformable elephant trunks, we presented a modular tensegrity structure with preprogrammable stiffness for continuum robots. Then we derived a mechanical model based on a positional formulation finite element method for predicting the configuration of the structure in different deformation scenarios. Theoretical predictions revealed that the curvature of each segment could be regulated by preprogramming their spring stiffness. Hence, our customizable design could offer an effective route for efficient robotic interactions. We further fabricated a continuum robot consisting of 12 modules, and showcased its deformation patterns under multiple scenarios. By regulating the distribution of spring stiffness, our robot could move through channels with varying curvatures, exhibiting its potential for applications where varying curvature, and conformal and efficient interactions are needed. Leveraging the inherent intelligence, this robotic system could simplify the complexity of the required actuation and control systems.


Asunto(s)
Robótica , Diseño de Equipo , Movimiento (Física)
9.
Insect Sci ; 30(5): 1507-1517, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36434816

RESUMEN

The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018-2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.

10.
Proc Natl Acad Sci U S A ; 119(45): e2211861119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322770

RESUMEN

Insect wings are deformable airfoils, in which deformations are mostly achieved by complicated interactions between their structural components. Due to the complexity of the wing design and technical challenges associated with testing the delicate wings, we know little about the properties of their components and how they determine wing response to flight forces. Here, we report an unusual structure from the hind-wing membrane of the beetle Pachnoda marginata. The structure, a transverse section of the claval flexion line, consists of two distinguishable layers: a bell-shaped upper layer and a straight lower layer. Our computational simulations showed that this is an effective one-way hinge, which is stiff in tension and upward bending but flexible in compression and downward bending. By systematically varying its design parameters in a computational model, we showed that the properties of the double-layer membrane hinge can be tuned over a wide range. This enabled us to develop a broad design space, which we later used for model selection. We used selected models in three distinct applications, which proved that the double-layer hinge represents a simple yet effective design strategy for controlling the mechanical response of structures using a single material and with no extra mass. The insect-inspired, one-way hinge is particularly useful for developing structures with asymmetric behavior, exhibiting different responses to the same load in two opposite directions. This multidisciplinary study not only advances our understanding of the biomechanics of complicated insect wings but also informs the design of easily tunable engineering hinges.


Asunto(s)
Escarabajos , Alas de Animales , Animales , Alas de Animales/fisiología , Insectos , Fenómenos Biomecánicos , Membranas , Vuelo Animal/fisiología , Modelos Biológicos
11.
Adv Sci (Weinh) ; 9(32): e2203783, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36104206

RESUMEN

Despite significant scientific advances in the past decades, most structures around us are static and ironically outdated from a technological perspective. Static structures have limited efficiency and durability and typically perform only a single task. Adaptive structures, in contrast, adjust to different conditions, tasks, and functions. They not only offer multi-functionality but also enhanced efficiency and durability. Despite their obvious advantages over conventional structures, adaptive structures have only been limitedly used in everyday life applications. This is because adaptive structures often require sophisticated sensing, feedback, and controls, which make them costly, heavy, and complicated. To overcome this problem, here the concept of Mechanical Intelligence (MI) is introduced to promote the development of engineering systems that adapt to circumstances in a passive-automatic way. MI will offer a new paradigm for designing structural components with superior capabilities. As adaptability has been rewarded throughout evolution, nature provides one of the richest sources of inspiration for developing adaptive structures. MI explores nature-inspired mechanisms for automatic adaptability and translates them into a new generation of mechanically intelligent components. MI structures, presenting widely accessible bioinspired solutions for adaptability, will facilitate more inclusive and sustainable industrial development, reflective of Goal 9 of the 2030 Agenda for Sustainable Development.


Asunto(s)
Biomimética , Ingeniería , Inteligencia
12.
Korean J Pain ; 35(4): 440-446, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36175343

RESUMEN

Background: The authors showed in a previous study that some novel triazine derivatives had an anti-inflammatory effect. The present study was designed to evaluate the antinociceptive effect of five out of nine compounds including two vanillin-triazine (5c and 5d) and three phenylpyrazole-triazine (10a, 10b, 10e) derivatives which showed the best anti-inflammatory effect. Methods: Male Swiss mice (25-30 g) were used. To assess the antinociceptive effect, acetic acid-writhing, formalin, and hot plate tests were used after intraperitoneal injection of each compound. Results: All compounds significantly (P < 0.001) reduced acetic acid-induced writhing at tested doses (50, 100, and 200 mg/kg). Also, the percent inhibition of writhing in the acetic acid test showed that at the maximum tested dose of these compounds (200 mg/kg), the order of potencies is as follows: 10b > 10a > 10e > 5d > 5c. In the formalin test, compounds 5d, 10a, and 10e showed an antinociceptive effect in the acute phase and all compounds were effective in the chronic phase. In the hot plate test, compounds 5c, 5d, and 10a demonstrated an antinociceptive effect. Conclusions: The results clearly showed that both vanillin-triazine and phenylpyrazole-triazine derivatives had an antinociceptive effect. Also, some compounds which showed activity in the early phase of formalin test as well as in the hot plate test could control acute pain in addition to chronic or inflammatory pain.

13.
Sci Rep ; 12(1): 13917, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977980

RESUMEN

Despite extensive research on the biomechanics of insect wings over the past years, direct mechanical measurements on sensitive wing specimens remain very challenging. This is especially true for examining delicate museum specimens. This has made the finite element method popular in studies of wing biomechanics. Considering the complexities of insect wings, developing a wing model is usually error-prone and time-consuming. Hence, numerical studies in this area have often accompanied oversimplified models. Here we address this challenge by developing a new tool for fast, precise modelling of insect wings. This application, called WingGram, uses computer vision to detect the boundaries of wings and wing cells from a 2D image. The app can be used to develop wing models that include complex venations, corrugations and camber. WingGram can extract geometric features of the wings, including dimensions of the wing domain and subdomains and the location of vein junctions. Allowing researchers to simply model wings with a variety of forms, shapes and sizes, our application can facilitate studies of insect wing morphology and biomechanics. Being an open-access resource, WingGram has a unique application to expand how scientists, educators, and industry professionals analyse insect wings and similar shell structures in other fields, such as aerospace.


Asunto(s)
Vuelo Animal , Alas de Animales , Animales , Fenómenos Biomecánicos , Insectos , Modelos Biológicos , Alas de Animales/anatomía & histología
14.
Beilstein J Nanotechnol ; 13: 404-410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529804

RESUMEN

Cuticle is one of the most abundant, but least studied, biological composites. As a result, it has contributed very little to the field of biomimetics. An important step to overcome this problem is to study cuticle biomechanics by means of accurate mechanical measurements. However, due to many reasons, mechanical testing on fresh cuticle specimens is not always possible. Hence, researchers often use stored specimens to measure properties of arthropod cuticle. Our knowledge about the influence of different treatment methods on cuticle properties is currently very limited. In this study, we investigated the effect of freezing, desiccation, and rehydration on the elastic modulus of the hind tibial cuticle of locusts obtained by nanoindentation. We found that all the mentioned treatments significantly influence cuticle properties. This is in contrast to previous reports suggesting that freezing did not significantly influence the elastic modulus of native cuticle specimens tested in bending. In the light of our data, we suggest that changes of the elastic modulus of cuticle are not solely due to changes of the water content. Our results provide a platform for more accurate measurements of cuticle properties.

15.
Insects ; 12(12)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34940196

RESUMEN

Insects are the most diverse animal taxon, both in terms of the number of species and the number of individuals [...].

16.
Mediators Inflamm ; 2021: 8437753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381307

RESUMEN

OBJECTIVE: Peritoneal adhesion (PA) is an abnormal connective tissue that usually occurs between tissues adjacent to damaged organs during processes such as surgery. In this study, the anti-inflammatory and antioxidant effects of Portulaca oleracea (PO) were investigated against postoperative-induced peritoneal adhesion. METHODS: Thirty healthy male Wistar rats (220 ± 20 g, 6-8 weeks) were randomly divided into four groups: (1) normal, (2) control (induced peritoneal adhesion), and (3) and (4) PO extracts (induced peritoneal adhesion and received 100 or 300 mg/kg/day of PO extract for seven days). Finally, macroscopic and microscopic examinations were performed using different scoring systems and immunoassays in the peritoneal lavage fluid. RESULTS: We found that the levels of adhesion scores and interleukin- (IL-) 1ß, IL-6, IL-10, tumour necrosis factor- (TNF-) α, transforming growth factor- (TGF-) ß 1, vascular endothelial growth factor (VEGF), and malondialdehyde (MDA) were increased in the control group. However, PO extract (100 and 300 mg/kg) notably reduced inflammatory (IL-1ß, IL-6, and TNF-α), fibrosis (TGF-ß 1), angiogenesis (VEGF), and oxidative (MDA) factors, while increased anti-inflammatory cytokine IL-10, antioxidant factor glutathione (GSH), compared to the control group. CONCLUSION: Oral administration of PO improved postoperational-induced PA by alleviating the oxidative factors, fibrosis, inflammatory cytokines, angiogenesis biomarkers, and stimulating antioxidative factors. Hence, PO can be considered a potential herbal medicine to manage postoperative PA. However, further clinical studies are required to approve the effectiveness of PO.


Asunto(s)
Etanol/química , Peritoneo/patología , Portulaca/efectos de los fármacos , Adherencias Tisulares/tratamiento farmacológico , Administración Oral , Animales , Antiinflamatorios/química , Antioxidantes/química , Biomarcadores/metabolismo , Adhesión Celular , Cromatografía , Citocinas/metabolismo , Fibrosis , Inmunoensayo , Inflamación , Masculino , Neovascularización Patológica , Oxidantes/química , Estrés Oxidativo , Lavado Peritoneal , Fitoterapia , Extractos Vegetales/uso terapéutico , Periodo Posoperatorio , Ratas , Ratas Wistar
17.
Bioinspir Biomim ; 16(5)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34384068

RESUMEN

Some insects, such as bees, wasps, and bugs, have specialized coupling structures to synchronize the wing motions in flight. Some others, such as ladybirds, are equipped with coupling structures that work only at rest. By locking elytra into each other, such structures provide hindwings with a protective cover to prevent contamination. Here, we show that the coupling may play another significant role: contributing to energy absorption in falls, thereby protecting the abdomen against mechanical damage. In this combined experimental, numerical and theoretical study, we investigated free falls of ladybirds (Coccinella septempunctata), and discovered that upon collision to the ground, the coupling may fail and the elytra may unlock. This unlocking of the coupling increased the energy absorption by 33%, in comparison to when the elytra remain coupled. Using micro-computed tomography scanning, we developed comparative models that enabled us to simulate impact scenarios numerically. Our results showed that unlocking of the coupling, here called elytra splitting, reduces both the peak impact force and rebound velocity. We fabricated the insect-inspired coupling mechanism using 3D printing and demonstrated its application as a damage preventing on system for quadcopters in accidental collisions.


Asunto(s)
Accidentes por Caídas , Escarabajos , Animales , Abejas , Fenómenos Biomecánicos , Alas de Animales , Microtomografía por Rayos X
18.
Bioinspir Biomim ; 16(5)2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34233306

RESUMEN

The antH. venatorcan engage in various labors using a pair of elongated mandibles with the ability to rotate about two orthogonal axes. This biaxial rotation enables the ant to gently handle their small, fragile eggs with enhanced contact area and smaller work space. However, how this biaxial rotation influences the ant's predation ability and how the ant responds to this influence remain elusive. We quantitatively investigate the tribological performance of the ant's mandibles during interactions with prey by taking morphology and kinematics into consideration. We find that each ant mandible features unique, double-rows of dorsal teeth (DT) and ventral teeth (VT), which are employed to firmly clamp prey over a wide range of sizes by biting their different body parts, demonstrating the ant's predation ability. We hypothesize the mechanism underlying such an ability may rely on the two, non-parallel rows of teeth which potentially eliminate effects of biaxial rotation. To test this hypothesis, we systematically change the distribution and orientation of teeth on bio-inspired robotic mandibles and investigate the mandible tribological performance of different teeth configurations. We find that the friction coefficient varies prominently between the DT and VT resulting from biaxial rotation, with the variations showing an inverse pattern. This explains the observed phenomenon that mandibles equipped with DT and VT provide the most stable friction coefficient when clamping objects of different sizes using different mandible regions. The specialized distribution of teeth facilitates enhanced tribological stability in capturing prey, and demonstrates an intrinsic link between the form, motion, and function in the insect appendages. Our research sheds lights on the current understanding of the predation behaviors of ants, and can inspire future design of multifunctional robotic grippers.


Asunto(s)
Hormigas , Animales , Insectos , Maxilares , Mandíbula , Conducta Predatoria
19.
Acta Biomater ; 134: 490-498, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34293506

RESUMEN

Insect cuticle can reach a wide range of material properties, which is thought to be the result of adaptations to applied mechanical stresses. Biomechanical mechanisms behind these property variations remain largely unknown. To fill this gap, here we performed a comprehensive study by simultaneous investigation of the microstructure, sclerotization and the elasticity modulus of the specialized cuticle of the femora of desert locusts. We hypothesized that, considering their different roles in jumping, the femora of fore-, mid- and hind legs should be equipped with cuticles that have different mechanical properties. Surprisingly, our results showed that the hind femur, which typically bears higher stresses, has a lower elasticity modulus than the fore and mid femora in the longitudinal direction. This is likely due to the lower sclerotization and different microstructure of the hind femur cuticle. This allows for some deformability in the femur wall and is likely to reduce the risk of mechanical failure. In contrast to both other femora, the hind femur is also equipped with a set of sclerotized ridges that are likely to provide it with the required stiffness to withstand the mechanical loads during walking and jumping. This paper is one of only a few comprehensive studies on insect cuticle, which advances the current understanding of the relationship between the structure, material property and function in this complex biological composite. STATEMENT OF SIGNIFICANCE: Insect cuticle is a biological composite with strong anisotropy and wide ranges of material properties. Using an example of the femoral cuticle of desert locusts, we measured the elasticity modulus, microstructure and sclerotization level of the cuticle. Our results show that, although the hind femur withstands most of the stress during locomotion, it has a lower elasticity modulus than the fore and mid femora. This is likely to be a functional adaption to jumping, in order to allow small deformations of the femur wall and reduce the risk of material failure. Our results deepen the current understanding of the structure-material-function relationship in the complex insect cuticle.


Asunto(s)
Estructuras Animales/anatomía & histología , Saltamontes , Animales , Fenómenos Biomecánicos , Módulo de Elasticidad , Saltamontes/anatomía & histología , Insectos , Estrés Mecánico
20.
Adv Sci (Weinh) ; 8(16): e2004383, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34085417

RESUMEN

Wing-to-wing coupling mechanisms synchronize motions of insect wings and minimize their aerodynamic interference. Albeit they share the same function, their morphological traits appreciably vary across groups. Here the structure-material-function relationship of wing couplings of nine castes and species of Hymenoptera is investigated. It is shown that the springiness, robustness, and asymmetric behavior augment the functionality of the coupling by reducing stress concentrations and minimizing the impacts of excessive flight forces. A quantitative link is established between morphological variants of the coupling mechanisms and forces to which they are subjected. Inspired by the coupling mechanisms, a rotating-sliding mechanical joint that withstands tension and compression and can also be locked/unlocked is fabricated. This is the first biomimetic research of this type that integrates approaches from biology and engineering.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Biomimética/métodos , Modelos Biológicos , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Animales , Abejas , Avispas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...