Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioimpacts ; 13(4): 275-287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645024

RESUMEN

Introduction: Recently, the application of nanofibrous mats for dressing skin wounds has received great attention. In this study, we aimed to fabricate and characterize an electrospun nanofibrous mat containing polycaprolactone (PCL), chitosan (CTS), and propolis for use as a tissue-engineered skin substitute. Methods: Raw propolis was extracted, and its phenolic and flavonoid contents were measured. The physiochemical and biological properties of the fabricated mats, including PCL, PCL/CTS, and PCL/CTS/Propolis were evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), mechanical analysis, swelling and degradation behaviors, contact angle measurement, cell attachment, DAPI staining, and MTT assay. On the other hand, the drug release pattern of propolis from the PCL/CTS/Propolis scaffold was determined. A deep second-degree burn wound model was induced in rats to investigate wound healing using macroscopical and histopathological evaluations. Results: The results revealed that the propolis extract contained high amounts of phenolic and flavonoid compounds. The fabricated scaffold had suitable physicochemical and mechanical properties. Uniform, bead-free, and well-branched fibers were observed in SEM images of mats. AFM analysis indicated that the addition of CTS and propolis to PCL elevated the surface roughness. MTT results revealed that the electrospun PCL/CTS/Propolis mat was biocompatible. The presence of fibroblast cells on the PCL/CTS/Propolis mats was confirmed by DAPI staining and SEM images. Also, propolis was sustainably released from the PCL/CTS/Propolis mat. The animal study revealed that addition of propolis significantly improved wound healing. Conclusion: The nanofibrous PCL/CTS/Propolis mat can be applied as a tissue-engineered skin substitute for healing cutaneous wounds, such as burn wounds.

2.
Burns ; 48(7): 1690-1705, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34973854

RESUMEN

Tissue engineering is an emerging method for replacing damaged tissues. In this study, the potential application of electrospun polycaprolactone/chitosan/ the internal layer of oak fruit (Jaft) as skin scaffolds was investigated. A combination of Polycaprolactone (PCL), chitosan (CH), and the internal layer of oak fruit (Jaft) was used to incorporate mechanical properties of synthetic polymers, biological properties of natural polymers, and antibacterial activity of Jaft. Physical and morphological characteristics of prepared scaffolds were investigated using a scanning electron microscope (SEM), mechanical analysis, swelling ratio, and contact angle. Moreover, chemical and biological properties were evaluated by Fourier-transform infrared spectroscopy (FTIR), chromatography, flow cytometry, DAPI staining, MTT assay, and trypan blue exclusion assay. Obtained results demonstrated that the fabricated scaffolds have good mechanical properties. Moreover, the addition of chitosan and Jaft to the PCL scaffolds improved their water absorption capacity as well as surface hydrophilicity. MTT results showed the fabricated nanofibrous scaffolds have adequate cell viability, which is higher than the cell culture plate at each time point of culture. Furthermore, SEM images of cultured scaffolds, trypan blue exclusion assay, and DAPI staining confirmed that fibroblast cells could be well-attached and proliferate on the PCL/CH/Jaft scaffolds. Results have proven that this novel bioactive scaffold has promising mechanical properties, suitable biocompatibility in vitro, and in vivo. Consequently, it could be a promising candidate for skin tissue engineering applications.


Asunto(s)
Quemaduras , Quitosano , Nanofibras , Humanos , Nanofibras/química , Quitosano/farmacología , Andamios del Tejido/química , Azul de Tripano/farmacología , Materiales Biocompatibles/farmacología , Quemaduras/terapia , Poliésteres , Ingeniería de Tejidos/métodos , Vendajes , Antibacterianos/farmacología , Agua/química , Agua/farmacología , Proliferación Celular
3.
J Wound Care ; 29(10): 586-596, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33052794

RESUMEN

OBJECTIVE: Biodegradable polymers can replace damaged tissue components using tissue engineering techniques. The objective of this study is to determine an optimum environment for polymer scaffolds to improve the proliferation of fibroblast cells capable of wound repair. METHOD: In this study, the addition of polysaccharides, such as chitosan (CH) or hyaluronic acid (HA), to a polyurethane (PU) polymer was evaluated using different methods to determine if they affect scaffold morphology and cell activity of fibroblasts prepared from human foreskin tissues. Mechanical properties, such as tensile strength, contact angle and swelling test, were used to check the physical and mechanical properties of the scaffold. Fibroblast growth was also measured at 24, 48 and 72 hours. RESULTS: Scanning electron microscopy (SEM) determined that a 3:1 ratio of PU/CH scaffold, developed by electrospinning, allowed the formation of a uniform structure in scaffold fibres. Physical mechanical tests showed that PU electrospun scaffolds were not modified by the addition of CH. The mean stretch and mean water absorption increased significantly using the PU/CH scaffold, compared with the PU scaffold. However, the mean tensile strength and the mean contact angle, used to study space and porosity, did not differ between scaffolds. Fourier transform infrared spectroscopy confirmed the functional groups (-OH, -NH and -C=O) in the PU/CH scaffold, compared with PU or CH chemical structures alone. HA was then added to CH and PU/CH scaffolds to evaluate the growth of fibroblast cells. Results showed that cell viability and the number of cells, using MTT and trypan blue exclusion assay, respectively, increased significantly at 24, 48 and 72 hours of culture in PU/CH/HA scaffold compared to HA, CH/HA, and PU/HA. Moreover, PU/HA at 48 and 72 hours also increased cell viability and cell numbers compared to HA and CH/HA scaffolds. However, scaffolds at 72 hours had limited space for cell growth. Moreover, SEM data demonstrated that fibroblasts were able to proliferate, penetrate, migrate and survive on PU/HA and PU/CH/HA three-dimensional scaffolds, especially during the first 48 hours. Furthermore, 4',6-diamidino-2-phenylindole (DAPI) staining confirmed that fibroblasts could penetrate PU scaffolds and showed higher cell viability and lower cellular damage in PU/CH/HA, compared to CH/HA and PU/HA scaffolds. Finally, flow cytometry using CD90 and CD105 surface markers revealed that >90% of cells isolated from the human dermis were fibroblasts. CONCLUSION: In summary, PU/HA and PU/CH/HA scaffolds were found to be biocompatible and provided a suitable environment for the growth and proliferation of fibroblasts, which filled and covered all pores between the fibres. The new scaffold used in this study, made of synthetic and natural polymers, is a good candidate for applications in tissue engineering. It is therefore recommended to use PU in grafts or in wound dressing.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Quitosano/uso terapéutico , Fibroblastos , Ácido Hialurónico/uso terapéutico , Poliuretanos/uso terapéutico , Ingeniería de Tejidos/métodos , Andamios del Tejido , Materiales Biocompatibles , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA