Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 152(5): 1989-2000, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21363934

RESUMEN

Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T3 administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T3 treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T3 administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Transducción de Señal/efectos de los fármacos , Hormonas Tiroideas/farmacología , Acetilación/efectos de los fármacos , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Proteínas Hedgehog/metabolismo , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Histonas/metabolismo , Hipotiroidismo/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores Patched , Receptor Patched-1 , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Smoothened , Hormonas Tiroideas/metabolismo , Triyodotironina/farmacología
2.
J Neurosci ; 28(37): 9145-50, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18784295

RESUMEN

Neurons acquire their molecular, neurochemical, and connectional features during development as a result of complex regulatory mechanisms. Here, we show that a ubiquitous, multifunctional protein cofactor, Chip, plays a critical role in a set of neurons in Drosophila that control the well described posteclosion behavior. Newly eclosed flies normally expand their wings and display tanning and hardening of their cuticle. Using multiple approaches to interfere with Chip function, we find that these processes do not occur without normal activity of this protein. Furthermore, we identified the nature of the deficit to be an absence of Bursicon in the hemolymph of newly eclosed flies, whereas the responsivity to Bursicon in these flies remains normal. Chip interacts with transcription factors of the LIM-HD (LIM-homeodomain) family, and we identified one member, dIslet, as a potential partner of Chip in this process. Our findings provide the first evidence of transcriptional mechanisms involved in the development of the neuronal circuit that regulates posteclosion behavior in Drosophila.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Drosophila/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Nucleares/fisiología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Calcitonina/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hemolinfa/metabolismo , Hormonas de Invertebrados/metabolismo , Proteínas Nucleares/genética , Fragmentos de Péptidos/metabolismo , ARN Interferente Pequeño/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...