Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Crit Rev Microbiol ; : 1-24, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546272

RESUMEN

The mouth houses the second largest diversity of microorganisms in the body, harboring more than 700 bacterial species colonizing the soft mucosa and hard tooth surfaces. Microbes are the cause of several health-related problems, such as dental carries, gingivitis, periodontitis, etc., in the mouth across different age groups and socioeconomic/demographic groups. Oral infections are major health problems that affect the standard of living. Compromised oral health is related to chronic conditions and systemic disorders. Microbes responsible for dental caries are acid-producing and aciduric Gram-positive bacteria (Streptococci, Lactobacilli). Gram-negative bacteria (Porphyromonas, Prevotella, Actinobacillus, and Fusobacterium) capable of growing in anaerobic environments are responsible for periodontal diseases. Due to the high prevalence of oral diseases, negative effects associated with the use of antimicrobial agents and increased antibiotic resistance in oral pathogens, suitable alternative methods (effective, economical and safe) to suppress microbes disturbing oral health need to be adopted. Side effects associated with the chemical antimicrobial agents are vomiting, diarrhea and tooth staining. Several researchers have studied the antimicrobial properties of plant extracts and phytochemicals and have used them as indigenous practices to control several infections. Therefore, phytochemicals extracted from plants can be suitable alternatives. This review focuses on the various phytochemical/plant extracts suppressing the growth of oral pathogens either by preventing their attachment to the surfaces or by preventing biofilm formation or other mechanisms.

2.
Chem Biodivers ; 20(9): e202300479, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37667613

RESUMEN

Leaves of jamun collected as agro by-produce during the cultivation of jamun is traditionally used as ayurvedic medicine to treat diabetes, gall bladder stones and other ailments. Most of the beneficial effects of jamun leaves are associated with phytochemicals found in jamun leaves such as gallic acid, tannins, mallic acid, flavonoids, essential oils, jambolin, ellagic acid, jambosine, antimellin and betulinic acid. Jamun possess curative activities like anticancer, antidiabetic, antifertility, anti-inflammatory, antidiarrheal, antimicrobial, antinociceptive, antioxidant, antiradiation, chemotherapeutic, and gastroprotective. The main goal of this review article is to provide information on the nutritional content, phytochemical composition and health promoting properties of jamun leaves. The review of literature based on the phytochemical composition and health promoting benefits of the jamun leaves, suggests that leaves can be used as potential constituent in the formulation of pharmacological drugs. From the review literature it is found that clinical, in-vivo, in-vitro studies are still required to check the health promoting effects of jamun leaves extracts on humans.


Asunto(s)
Syzygium , Humanos , Antioxidantes/farmacología , Ácido Betulínico , Flavonoides , Ácido Gálico
3.
Plants (Basel) ; 11(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36432824

RESUMEN

With the advent of pandemics and infectious diseases, numerous research activities on natural products have been carried out to combat them. Researchers are investigating natural products for the treatment and/or management of various infectious diseases and/or disorders. Acacia catechu (L.f.) Willd. belongs to the family Fabaceae (subfamily Mimosoideae) known as Khair or Cutch tree, possesses diverse pharmacological actions, and has been widely used in Asia and different parts of the world. The purpose of the present study is to highlight the phytochemical profile of different parts of A. catechu, the different biological activities of A. catechu extract, and the utilization of A. catechu as food and beverage. The present work constitutes a review of A. catechu; we performed searches (books, Google, Google Scholar, and Scopus publications) to compile the work/investigations made on A. catechu to the present. From our survey, it was concluded that the main phytochemicals compounds in A. catechu are protocatechuic acid, taxifolin, epicatechin, epigallocatechin, catechin, epicatechin gallate, procyanidin, phloroglucin, aldobiuronic acid, gallic acid, D-galactose, afzelchin gum, L-arabinose, D-rhamnose, and quercetin. The whole plant of A. catechu possesses a comprehensive variety of medicinal potentials such as antimicrobial, antidiarrheal, antinociceptive, antihyperlipidemic, antiulcer, antioxidant, antidiabetic, antiproliferative, haemolytic, and anti-inflammatory properties due to the presence of bioactive compounds like flavonoids, alkaloids, and tannins. However, even though the plant's metabolites were reported to have many different pharmacological uses, there is limited information about their toxicity or clinical trials. Further research on diverse metabolites of A. catechu should be carried out to ensure the safety or utilization of this plant in the pharma or food industries and in the development of potent plant-based drugs.

4.
Cells ; 11(18)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36139367

RESUMEN

Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.


Asunto(s)
Células Madre Mesenquimatosas , Células Madre , Células de la Médula Ósea , Células Madre Mesenquimatosas/metabolismo , Ligamento Periodontal , Extractos Vegetales/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142805

RESUMEN

Aegle marmelos (L.) Correa (Bael) fruit, a member of the Rutaceae family, is a major cultivated fruit plant in tropical and subtropical regions in countries of southeast Asia. Bael fruit has been a major topic for studies in recent years mainly due to its high nutritional (carbohydrates, proteins, minerals, and vitamins) value and presence of various phytochemicals, which attributed to its high medicinal value. These phytochemicals include various compounds, e.g., alkaloids, flavonoids, and phenolic acids (protocatechuic acid, gallic, and ellagic acid). The fruit extract of bael has been also an important study area for its pharmacological activities, including antidiarrheal, antioxidant, antidiabetic, hepatoprotective, radioprotective, anticancer, antiulcer properties. The current review mainly highlighted the nutritional and pharmacological activities of bael fruit. The nutritional profile and phytochemical profile were discussed in the review, along with their concentration in the fruit. Moreover, the experiments carried out in vivo and in vitro of bael fruit extracts with respect to their pharmacological activities were also discussed in the article. The recent literature based on nutritional and pharmacological values of bael fruit showed its high potential as a food and pharmaceutical product. Despite having high nutritional and pharmacological value, research related to molecular mechanisms of bael fruit is still limited, and clinical trials are needed to ensure its safety as a product in the food and pharma industries.


Asunto(s)
Aegle , Alcaloides , Rutaceae , Aegle/química , Antidiarreicos , Antioxidantes/farmacología , Carbohidratos , Suplementos Dietéticos , Ácido Elágico , Flavonoides , Frutas , Hipoglucemiantes/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Vitaminas
6.
Int J Biol Macromol ; 219: 1047-1061, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35914557

RESUMEN

Allium cepa (onion) and Allium sativum (garlic) are important members of the Amaryllidaceae (Alliaceae) family and are being used both as food and medicine for centuries in different parts of the world. Polysaccharides have been extracted from different parts of onion and garlic such as bulb, straw and cell wall. The current literature portrays several studies on the extraction of polysaccharides from onion and garlic, their modification and determination of their structural (molecular weight, monosaccharide unit and their arrangement, type and position of glycosidic bond or linkage, degree of polymerization, chain conformation) and functional properties (emulsifying property, moisture retention, hygroscopicity, thermal stability, foaming ability, fat-binding capacity). In this line, this review, summarizes the various extraction techniques used for polysaccharides from onion and garlic, involving methods like solvent extraction method. Furthermore, the antioxidant, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, and antidiabetic properties of onion and garlic polysaccharides as reported in in vivo and in vitro studies are also critically assessed in this review. Different studies have proved onion and garlic polysaccharides as potential antioxidant and immunomodulatory agent. Studies have implemented to improve the functionality of onion and garlic polysaccharides through various modification approaches. Further studies are warranted for utilizing onion and garlic polysaccharides in the food, nutraceutical, pharmaceutical and cosmetic industries.


Asunto(s)
Antiinfecciosos , Ajo , Antioxidantes/farmacología , Ajo/química , Hipoglucemiantes , Monosacáridos , Cebollas/química , Preparaciones Farmacéuticas , Polisacáridos/química , Polisacáridos/farmacología , Solventes
7.
Oxid Med Cell Longev ; 2022: 2451733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720184

RESUMEN

The prevalence of viral infections, cancer, and diabetes is increasing at an alarming rate around the world, and these diseases are now considered to be the most serious risks to human well-being in the modern period. There is a widespread practice in Asian countries of using papaya leaves (C. papaya L.) as herbal medicine, either alone or in combination with prescribed medications, to treat a variety of ailments. The importance of conducting the necessary descriptive studies in order to determine the safety of papaya leaf consumption is also emphasized in the context of their application in the healthcare sector. Electronic databases such as Google Scholar, Scopus, and PubMed were used to gather information on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The literature was gathered from publications on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The antidengue, anticancer, antidiabetic, neuroprotective, and anti-inflammatory effects of papaya leaves discussed in this article are supported by evidence from preclinical, in vivo, in vitro, and clinical trial studies, as well as from other sources. Leaves have been investigated for their mechanism of action as well as their potential to be used in the development of novel herbal products for the health business. According to the reports gathered, only a small number of research demonstrated that leaf extract at high concentrations was hazardous to certain organs. The collective literature reviewed in this review provides insights into the use of papaya leaves as a cure for epidemic diseases, highlighting the phytochemical composition and pharmacological attributes of papaya leaves, as well as the results of various preclinical and clinical studies that have been conducted so far on the subject. The review clearly demonstrates the successful medical evidence for the use of papaya leaf extracts in the healthcare system as a supplemental herbal medication in a variety of clinical settings.


Asunto(s)
Carica , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Carica/química , Humanos , Fitoquímicos , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta
8.
Antioxidants (Basel) ; 11(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35624686

RESUMEN

Periodontal diseases are caused mainly by inflammation of the gums and bones surrounding the teeth or by dysbiosis of the oral microbiome, and the Global Burden of Disease study (2019) reported that periodontal disease affects 20-50% of the global population. In recent years, more preference has been given to natural therapies compared to synthetic drugs in the treatment of periodontal disease, and several oral care products, such as toothpaste, mouthwash, and dentifrices, have been developed comprising honeybee products, such as propolis, honey, royal jelly, and purified bee venom. In this study, we systematically reviewed the literature on the treatment of periodontitis using honeybee products. A literature search was performed using various databases, including PubMed, Web of Science, ScienceDirect, Scopus, clinicaltrials.gov, and Google Scholar. A total of 31 studies were reviewed using eligibility criteria published between January 2016 and December 2021. In vitro, in vivo, and clinical studies (randomized clinical trials) were included. Based on the results of these studies, honeybee products, such as propolis and purified bee venom, were concluded to be effective and safe for use in the treatment of periodontitis mainly due to their antimicrobial and anti-inflammatory activities. However, to obtain reliable results from randomized clinical trials assessing the effectiveness of honeybee products in periodontal treatment with long-term follow-up, a broader sample size and assessment of various clinical parameters are needed.

9.
Plants (Basel) ; 11(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214879

RESUMEN

Guava (Psidium guajava L.) fruit is also known as the apple of tropics, belongs to the family of genus Psidium, and is widely cultivated in tropical zones of the world. Recently, the importance of guava fruit has increased due to its inherent nutritional content, pleasant aroma, excellent flavor, and delicious taste. It is considered an excellent source of nutrients and phytochemicals. Guava is a climacteric fruit that continues to mature or ripen even after harvest, showing an increase in the rate of respiration and metabolic activities within a short period, leading to rapid senescence or spoilage of fruit. It has limitations in terms of commercialization due to short storage life after harvest and sensitivity to diseases and chilling injury during the storage period. Many postharvest technologies such as edible packaging, modified atmosphere packaging (MAP), composite packaging, controlled atmosphere packaging (CAP), antimicrobial/antifungal packaging, and nano packaging have been used to retard the chilling injury and enhance the keeping quality of guava fruits during the storage period to control respiration rate, reduce weight loss, minimize lipid oxidation, and maintain organoleptic properties. However, these packaging technologies have varied effects on the internal and external quality attributes of guava fruits. This review, therefore, discusses the physiology, mechanism of ripening, oxidation, and ethylene production of guava fruits. The review also discusses the packaging technologies and their effect on the postharvest characteristics of guava fruits during the storage period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA