RESUMEN
Down-regulation of Cisd2 in the liver has been implicated in the development of nonalcoholic fatty liver disease (NAFLD) and increasing the level of Cisd2 is therefore a potential therapeutic approach to this group of diseases. Herein, we describe the design, synthesis, and biological evaluation of a series of Cisd2 activators, all thiophene analogs, based on a hit obtained using two-stage screening and prepared via either the Gewald reaction or by intramolecular aldol-type condensation of an N,S-acetal. Metabolic stability studies of the resulting potent Cisd2 activators suggest that thiophenes 4q and 6 are suitable for in vivo studies. The results from studies on 4q-treated and 6-treated Cisd2hKO-het mice, which carry a heterozygous hepatocyte-specific Cisd2 knockout, confirm that (1) there is a correlation between Cisd2 levels and NAFLD and (2) these compounds have the ability to prevent, without detectable toxicity, the development and progression of NAFLD.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Regulación hacia Abajo , Hepatocitos/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Tiofenos/farmacología , Tiofenos/uso terapéuticoRESUMEN
Accumulation of aluminum in human has been reported to be associated with dementia, Parkinson's disease, and Alzheimer's disease. The objectives of this study were to evaluate an edible biopolymer poly(γ-glutamic acid) (γ-PGA) for aluminum removal efficiency under in vitro conditions as affected by pH, contact time, aluminum concentration, temperature, ionic strength, and essential metals in both aqueous aluminum solution and simulated gastrointestinal fluid (GIF). A low aluminum adsorption occurred at pH 1.5-2.5, followed by a maximum adsorption at pH 3.0-4.0 and precipitating thereafter as aluminum hydroxide at pH > 4. Adsorption was extremely fast with 81-96% of total adsorption being attained within 1 min, reaching equilibrium in 5-10 min. Kinetic data at low (10 mg/L) and high (50 mg/L) concentrations were well described by pseudo-first-order and pseudo-second-order models, respectively. Equilibrium adsorption isotherms at different temperatures were precisely fitted by both Langmuir and Redlich-Peterson models with the maximum adsorption capacities at 25, 37, and 50 °C being 35.85, 38.68, and 44.23 mg/g, respectively. Thermodynamic calculations suggested endothermic and spontaneous nature of aluminum adsorption by γ-PGA with increased randomness at the solid/solution interface. Variation in ionic strengths did not alter the adsorption capacity, however, the incorporation of essential metals significantly reduced the aluminum adsorption by following the order copper > iron > zinc > calcium > potassium. Compared to aqueous solution, the aluminum adsorption from simulated GIF was high at all studied pH (1-4) with Langmuir monolayer adsorption capacity being 49.43 mg/g at 37 °C and pH 4. The outcome of this study suggests that γ-PGA could be used as a safe detoxifying agent for aluminum.
Asunto(s)
Aluminio/química , Biopolímeros/química , Digestión , Ácido Poliglutámico/análogos & derivados , Adsorción , Aluminio/metabolismo , Biopolímeros/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Biológicos , Ácido Poliglutámico/química , Ácido Poliglutámico/metabolismo , TermodinámicaRESUMEN
New π-extended porphyrin dyes YD26-YD29 with long alkoxyl chains at the ortho positions of the meso-phenyls, and meta di-tert-butylphenyl-substituted porphyrins YD12-CN, and YD13-CN were synthesized for dye-sensitized solar cells, and their optical, electrochemical and photovoltaic properties were investigated and compared with those of YD12 and YD13. The absorption spectra of YD26-YD29 showed a slight red shift of Soret bands and blue shift of Q bands as compared to the meta-substituted porphyrins due to the electron-donating effects of dioctyloxy substituents at the ortho-positions of the meso-phenyl rings. Replacement of the carboxyl with a cyanoacrylic acid as the anchoring group results in significant broadening and red shifts of the absorptions, which is due to the strong electronic coupling between the pull unit and the porphyrin ring facilitated by the C≡C triple bond. The electrochemical studies and quantum-chemical calculations (DFT) indicated that the ortho alkoxy-substituted sensitizers exhibit lower oxidation potential, i.e. a higher HOMO energy level, and their HOMO-LUMO gaps are comparable to the meta-substituted analogues. The photovoltaic measurements confirmed that the ortho-octyloxy groups in the two meso-phenyls of YD26 and YD27 play a significant role in preventing dye aggregation thereby enhancing the corresponding short-circuit current density and open-circuit voltage. The power conversion efficiency (η) of YD26 is 8.04%, which is 11% higher than that of YD12, whereas the efficiency of YD27 is 6.03%, which is 135% higher than that of YD13. On the other hand, the poor performance of YD28 and YD29 is due to the floppy structural nature and limited molecular rigidity of the cyanoacrylic acid anchor.