Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gastroenterology ; 163(6): 1643-1657.e14, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36037995

RESUMEN

BACKGROUND & AIMS: Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS: Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS: Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS: We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.


Asunto(s)
Necroptosis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Femenino , Masculino , Ratones , Animales , Epigénesis Genética , Enfermedad del Hígado Graso no Alcohólico/genética , Hepatocitos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteínas Quinasas/genética
2.
Cell Rep ; 30(13): 4343-4354.e4, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234472

RESUMEN

Plasmodium sporozoites infect the liver and develop into exoerythrocytic merozoites that initiate blood-stage disease. The hepatocyte molecular pathways that permit or abrogate parasite replication and merozoite formation have not been thoroughly explored, and a deeper understanding may identify therapeutic strategies to mitigate malaria. Cellular inhibitor of apoptosis (cIAP) proteins regulate cell survival and are co-opted by intracellular pathogens to support development. Here, we show that cIAP1 levels are upregulated during Plasmodium liver infection and that genetic or pharmacological targeting of cIAPs using clinical-stage antagonists preferentially kills infected hepatocytes and promotes immunity. Using gene-targeted mice, the mechanism was defined as TNF-TNFR1-mediated apoptosis via caspases 3 and 8 to clear parasites. This study reveals the importance of cIAPs to Plasmodium infection and demonstrates that host-directed antimalarial drugs can eliminate liver parasites and induce immunity while likely providing a high barrier to resistance in the parasite.


Asunto(s)
Apoptosis , Hepatocitos/patología , Hígado/patología , Hígado/parasitología , Malaria/patología , Malaria/parasitología , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Disponibilidad Biológica , Caspasa 3/metabolismo , Culicidae/parasitología , Dipéptidos/administración & dosificación , Dipéptidos/farmacología , Hepatocitos/efectos de los fármacos , Inmunidad/efectos de los fármacos , Indoles/administración & dosificación , Indoles/farmacología , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/metabolismo , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/inmunología , Plasmodium/efectos de los fármacos , Plasmodium/crecimiento & desarrollo , Plasmodium/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/efectos de los fármacos , Esporozoítos/fisiología , Tiazoles/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
3.
Mol Microbiol ; 109(4): 458-473, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29873127

RESUMEN

Transmission of the malaria parasite Plasmodium falciparum involves infection of Anopheles mosquitoes. Here we characterize SOPT, a protein expressed in P. falciparum ookinetes that facilitates infection of the mosquito midgut. SOPT was identified on the basis that it contains a signal peptide, a PEXEL-like sequence and is expressed in asexual, ookinete and sporozoite stages, suggesting it is involved in infecting the human or mosquito host. SOPT is predicted to contain a subtilisin-like fold with a non-canonical catalytic triad and is orthologous to P. berghei PIMMS2. Localization studies reveal that SOPT is not exported to the erythrocyte but is expressed in ookinetes at the parasite periphery. SOPT-deficient parasites develop normally through the asexual and sexual stages and produce equivalent numbers of ookinetes to NF54 controls, however, they form fewer oocysts and sporozoites in mosquitoes. SOPT-deficient parasites were also unable to activate the immune-responsive midgut invasion marker SRPN6 after mosquito ingestion, suggesting they are defective for entry into the midgut. Disruption of SOPT in P. berghei (PIMMS2) did not affect other lifecycle stages or ookinete development but again resulted in fewer oocysts and sporozoites in mosquitoes. Collectively, this study shows that SOPT/PIMMS2 plays a conserved role in ookinetes of different Plasmodium species.


Asunto(s)
Anopheles/parasitología , Sistema Digestivo/parasitología , Oocistos/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Esporozoítos/crecimiento & desarrollo , Animales , Malaria Falciparum/transmisión , Mosquitos Vectores/parasitología , Subtilisina/metabolismo
4.
Eur J Pharmacol ; 800: 81-95, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28219708

RESUMEN

Analytical pharmacology draws heavily on the concept of equilibrium of agonist and silent antagonist concentrations competing at a specific receptor site. This condition breaks down in nerve transmission when transmitter release is inhibited by prejunctional α2-adrenoceptors activated by an agonist such as clonidine. We have developed a method that allows the agonist dissociation constant KA of clonidine to be determined in a robust isolated right atrial assay of mouse, rat and guinea pig. By applying low numbers of field pulses 1-4 to prevent autoinhibitory feedback, clonidine shifted the nerve pulse stimulation-tachycardia curves to the right. These peak responses to field pulses were equated to responses to exogenous noradrenaline and the pKA determined by global fitting and display in the Clark plot. The pKA for clonidine ranged from 8.95 in the mouse, 7.8 in rat and 8.3 in guinea pig. The propranolol pKB was 8.87 in mouse and 8.91 in rat atria, reading very similarly to those values from ß-adrenoceptor agonist assays under equilibrium conditions. In mesenteric resistance arteries mounted in a myograph for electrical field stimulation, clonidine again inhibited contractions to field pulses in mouse arteries with a pKA of 7.12, but was inactive in rat arteries due to competing autoinhibitory feedback from nerve-released noradrenaline. In both species, prazosin inhibited the field pulses with a pKB of 9.08 in rat and 9.03 in mouse arteries. We conclude that pKB for antagonists and pKA for the prejunctional inhibitors of nerve transmission can be determined with this novel analytical approach.


Asunto(s)
Clonidina/farmacología , Atrios Cardíacos/inervación , Arterias Mesentéricas/inervación , Receptores Adrenérgicos alfa 2/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Cistamina/análogos & derivados , Cistamina/farmacología , Desipramina/farmacología , Relación Dosis-Respuesta a Droga , Cobayas , Atrios Cardíacos/efectos de los fármacos , Masculino , Arterias Mesentéricas/efectos de los fármacos , Ratones , Norepinefrina/farmacología , Ratas , Yohimbina/farmacología
5.
J Med Chem ; 57(18): 7644-62, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25167370

RESUMEN

Following erythrocyte invasion, malaria parasites export a catalogue of remodeling proteins into the infected cell that enable parasite development in the human host. Export is dependent on the activity of the aspartyl protease, plasmepsin V (PMV), which cleaves proteins within the Plasmodium export element (PEXEL; RxL↓xE/Q/D) in the parasite's endoplasmic reticulum. Here, we generated transition state mimetics of the native PEXEL substrate that potently inhibit PMV isolated from Plasmodium falciparum and Plasmodium vivax. Through optimization, we identified that the activity of the mimetics was completely dependent on the presence of P1 Leu and P3 Arg. Treatment of P. falciparum-infected erythrocytes with a set of optimized mimetics impaired PEXEL processing and killed the parasites. The striking effect of the compounds provides a clearer understanding of the accessibility of the PMV active site and reaffirms the enzyme as an attractive target for the design of future antimalarials.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Materiales Biomiméticos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/enzimología , Inhibidores de Proteasas/farmacología , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Línea Celular , Descubrimiento de Drogas , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Humanos , Modelos Moleculares , Conformación Proteica , Proteolisis/efectos de los fármacos , Relación Estructura-Actividad
6.
PLoS Biol ; 12(7): e1001897, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24983235

RESUMEN

The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Oligopéptidos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Sulfonamidas/farmacología , Retículo Endoplásmico/metabolismo , Eritrocitos/parasitología , Humanos , Transporte de Proteínas/efectos de los fármacos , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...