Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1128133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101650

RESUMEN

Increased thermogenesis in brown adipose tissue might have an obesity-reducing effect in humans. In transgenic mice, depletion of genes involved in creatine metabolism results in disrupted thermogenic capacity and altered effects of high-fat feeding on body weight. Data analyses of a sex-stratified genome-wide association study (GWAS) for body mass index (BMI) within the genomic regions of genes of this pathway (CKB, CKMT1B, and GATM) revealed one sex-dimorphic BMI-associated SNP in CKB (rs1136165). The effect size was larger in females than in males. A mutation screen of the coding regions of these three candidate genes in a screening group (192 children and adolescents with severe obesity, 192 female patients with anorexia nervosa, and 192 healthy-lean controls) identified five variants in each, CKB and GATM, and nine variants in the coding sequence of CKMT1B. Non-synonymous variants identified in CKB and CKMT1B were genotyped in an independent confirmation study group (781 families with severe obesity (trios), 320 children and adolescents with severe obesity, and 253 healthy-lean controls). In silico tools predicted mainly benign yet protein-destabilizing potentials. A transmission disequilibrium test in trios with severe obesity indicated an obesity-protective effect of the infrequent allele at rs149544188 located in CKMT1B. Subsequent correlation analyses in 1,479 individuals of the Leipzig Obesity BioBank revealed distinct correlations of CKB with the other two genes in omental visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (SAT). Furthermore, between-subject comparisons of gene expression levels showed generally higher expressions of all three genes of interest in VAT than in SAT. Future in vitro analyses are needed to assess the functional implications of these findings.

2.
Z Kinder Jugendpsychiatr Psychother ; 50(3): 175-185, 2021 May.
Artículo en Alemán | MEDLINE | ID: mdl-34328348

RESUMEN

Genetic Analyses of Complex Phenotypes Through the Example of Anorexia Nervosa and Bodyweight Regulation Abstract. Genetics variants are important for the regulation of bodyweight and also contribute to the genetic architecture of eating disorders. For many decades, family studies, a subentity of so-called formal genetic studies, were employed to determine the genetic share of bodyweight and eating disorders and found heritability rates exceeding 50 % with both phenotypes. Because of this significant contribution of genetics, the search for those genes and their variants related to the variance in bodyweight and the etiology of eating disorders - or both - was commenced by the early 1990s. Initially, candidate genes studies were conducted targeting those genes most plausibly related to either phenotype, especially based on pathophysiological considerations. This approach, however, implicated only a few genes in the regulation of bodyweight and did not provide significant insights into the genetics of eating disorders. Driven by considerable methodological advances in genetic research, especially related to the introduction of so-called genome-wide association studies by the beginning of the 21st century, today more than 1,000 variants/loci have been detected that affect the regulation of bodyweight. Eight such loci have been identified regarding anorexia nervosa (AN). These results as well as those from cross-disorder analyses provide insights into the complex regulation of bodyweight and demonstrated unforeseen pathomechanisms for AN.


Asunto(s)
Anorexia Nerviosa , Trastornos de Alimentación y de la Ingestión de Alimentos , Anorexia Nerviosa/diagnóstico , Anorexia Nerviosa/genética , Peso Corporal/genética , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...