Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 89, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637654

RESUMEN

Natural products are small molecules synthesized by fungi, bacteria and plants, which historically have had a profound effect on human health and quality of life. These natural products have evolved over millions of years resulting in specific biological functions that may be of interest for pharmaceutical, agricultural, or nutraceutical use. Often natural products need to be structurally modified to make them suitable for specific applications. Combinatorial biosynthesis is a method to alter the composition of enzymes needed to synthesize a specific natural product resulting in structurally diversified molecules. In this review we discuss different approaches for combinatorial biosynthesis of natural products via engineering fungal enzymes and biosynthetic pathways. We highlight the biosynthetic knowledge gained from these studies and provide examples of new-to-nature bioactive molecules, including molecules synthesized using combinations of fungal and non-fungal enzymes.

2.
Fitoterapia ; 167: 105496, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990291

RESUMEN

Geophila repens (L.) I.M. Johnst (Rubiaceae) is a traditional medicinal plant used in Sri Lanka for the treatment of bacterial infections. Due to its rich endophytic fungi content, it was postulated that endophytically-produced specialized metabolites may be responsible for its purported antibacterial effects. To test this hypothesis, eight pure endophytic fungal cultures were isolated from G. repens then extracted and screened for antibacterial activity in a disc diffusion assay against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Large scale culturing, extraction, and purification of the most active fungal extract, obtained from Xylaria feejeensis, led to the isolation of 6',7'-didehydrointegric acid (1), 13-carboxyintegric acid (2), and four known compounds including integric acid (3). Compound 3 was isolated as the key antibacterial component (MIC = 16 µg/mL against Bacillus subtilis, 64 µg/mL against Methicillin-Resistant S. aureus). Compound 3 and its analogues were devoid of hemolytic activity up to the highest tested concentration of 45 µg/mL. This study demonstrates that specialized metabolites produced by endophytic fungi may contribute to the biological activity of some medicinal plants. Endophytic fungi should be evaluated as a potential source of antibiotics, especially from unexplored medicinal plants traditionally used for the treatment of bacterial infections.


Asunto(s)
Ascomicetos , Staphylococcus aureus Resistente a Meticilina , Plantas Medicinales , Rubiaceae , Sesquiterpenos , Plantas Medicinales/microbiología , Sesquiterpenos Policíclicos , Estructura Molecular , Antibacterianos/farmacología , Sesquiterpenos/metabolismo , Pruebas de Sensibilidad Microbiana , Hongos , Endófitos
3.
J Nat Prod ; 86(1): 52-65, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36525646

RESUMEN

Cyclotides are an intriguing class of structurally stable circular miniproteins of plant origin with numerous potential pharmaceutical and agricultural applications. To investigate the occurrence of cyclotides in Sri Lankan flora, 50 medicinal plants were screened, leading to the identification of a suite of new cyclotides from Geophila repens of the family Rubiaceae. Cycloviolacin O2-like (cyO2-like) gere 1 and the known cyclotide kalata B7 (kB7) were among the cyclotides characterized at the peptide and/or transcript level together with several putative enzymes, likely involved in cyclotide biosynthesis. Five of the most abundant cyclotides were isolated, sequenced, structurally characterized, and screened in antimicrobial and cytotoxicity assays. All gere cyclotides showed cytotoxicity (IC50 of 2.0-10.2 µM), but only gere 1 inhibited standard microbial strains at a minimum inhibitory concentration of 4-16 µM. As shown by immunohistochemistry, large quantities of the cyclotides were localized in the epidermis of the leaves and petioles of G. repens. Taken together with the cytotoxicity and membrane permeabilizing activities, this implicates gere cyclotides as potential plant defense molecules. The presence of cyO2-like gere 1 in a plant in the Rubiaceae supports the notion that phylogenetically distant plants may have coevolved to express similar cytotoxic cyclotides for a specific functional role, most likely involving host defense.


Asunto(s)
Ciclotidas , Plantas Medicinales , Rubiaceae , Secuencia de Aminoácidos , Ciclotidas/química , Proteínas de Plantas/química , Rubiaceae/química , Sri Lanka
4.
Phytochemistry ; 187: 112749, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33932786

RESUMEN

Cyclotides are an extremely stable class of peptides, ubiquitously distributed in Violaceae. The aim of the present study was to investigate the presence of cyclotides in Sri Lankan Violaceae plants, using combined tools of transcriptomics and mass spectrometry. New cyclotides were discovered for the first time in the wild flora of Sri Lanka, within Viola betonicifolia, a plant used in traditional medicine as an antimicrobial. Plant extracts prepared in small scale from Viola betonicifolia were first subjected to LC-MS analysis. Subsequent transcriptome de novo sequencing of Viola betonicifolia uncovered 25 new (vibe 1-25) and three known (varv A/kalata S, viba 17, viba 11) peptide sequences from Möbius and bracelet cyclotide subfamilies as well as hybrid cyclotides. Among the transcripts, putative linear acyclotide sequences (vibe 4, vibe 10, vibe 11 and vibe 22) that lack a conserved asparagine or aspartic acid vital for cyclisation were also present. Four asparagine endopeptidases (AEPs), VbAEP1-4 were found within the Viola betonicifolia transcriptome, including a peptide asparaginyl ligase (PAL), potentially involved in cyclotide backbone cyclisation, showing >93% sequence homology to Viola yedoensis peptide asparaginyl ligases, VyPALs. In addition, we identified two protein disulfide isomerases (PDIs), VbPDI1-2, likely involved in cyclotide oxidative folding, having high sequence homology (>74%) with previously reported Rubiaceae and Violaceae PDIs. The current study highlights the ubiquity of cyclotides in Violaceae as well as the utility of transcriptomic analysis for cyclotides and their putative processing enzyme discovery. The high variability of cyclotide sequences in terms of loop sizes and residues in V. betonicifolia showcase the cyclotide structure as an adaptable scaffold as well as their importance as a combinatorial library, implicated in plant defense.


Asunto(s)
Ciclotidas , Viola , Secuencia de Aminoácidos , Ciclotidas/genética , Espectrometría de Masas , Proteínas de Plantas/metabolismo , Sri Lanka , Transcriptoma , Viola/genética , Viola/metabolismo
5.
J Ethnopharmacol ; 246: 112158, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31421182

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sri Lanka is known to have very diverse flora. Many of these species are used for plant-based remedies, which form the integral part of two Sri Lankan systems of traditional medicine, Ayurveda and Deshiya Chikitsa. Despite their widespread use, only a limited number of studies have probed into the scientific evidence for bioactivity of these medicinal plants. Such studies rarely progress to the identification of bioactive natural products. AIM OF THE STUDY: The primary aim was to develop a bioactivity screening method and apply it to 50 Sri Lankan medicinal plants where antimicrobial properties could be relevant for its traditional use. The subsequent aim was the progression into defining and characterising potent isolates within targeted compound classes from such plants, i.e. Derris scandens and its antimicrobial flavonoids. MATERIAL AND METHODS: The plant collection comprised 24 species of Fabaceae, 15 Rubiaceae, 7 Solanaceae and 4 Cucurbitaceae plants. These 50 species were collected based on their ethnopharmacological importance and use in Sri Lankan traditional medicine. Crude extracts from each species were initially subjected to radial disc diffusion and microdilution assays. Subsequently, aqueous extracts of all plants were microfractionated in deep well plates using reversed-phase HPLC. Fractions were tested for antibacterial and cytotoxic activities and masses of target bioactive compounds were identified using mass spectrometry. Bioactive compounds with the masses identified through microfractions were isolated from Derris scandens using reversed-phase HPLC. The isolated pure compounds were characterised using LC-MS and NMR. RESULTS: Crude aqueous extracts from 19 species showed activity against Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) in the radial disc diffusion assay. Crude aqueous extracts from 34 plant species and organic extracts from 46 plant species were active against S. aureus (≤4 mg mL-1) in the microdilution assay. Microfractionation demonstrated antibacterial activity for 19 plants and cytotoxicity for 6 plants. Furthermore, target bioactive compounds and their molecular ions were identified during microfractionation. Dalpanitin and vicenin-3, two of the flavonoids isolated from Derris scandens gave MICs of 23 µg mL-1 against S. aureus. Dalpanitin also exhibited relevant MICs on Gram-negative bacteria (94 µg mL-1 against Escherichia coli and Pseudomonas aeruginosa). CONCLUSION: The microfractionation protocol developed in this study enabled time-efficient screening of many plants species, using a small quantity of sample material. In addition, microfractionation served as a guiding tool for identifying individual antimicrobial compounds. Through this process, flavonoids were isolated from Derris scandens, out of which dalpanitin and vicenin-3 showed activity in the low micromolar range. The high hit rate for in vitro antibacterial properties from this ethnopharmacologically guided sample collection gives credence to Sri Lankan traditional herbal medicine as a source for drug discovery.


Asunto(s)
Antibacterianos/aislamiento & purificación , Flavonoides/aislamiento & purificación , Magnoliopsida/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico , Flavonoides/farmacología , Humanos , Extractos Vegetales/química , Plantas Medicinales/metabolismo , Metabolismo Secundario , Sri Lanka
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA