RESUMEN
In response to global agricultural challenges, this review examines the synergistic impact of bioslurry and biogenic nanoparticles on soil amelioration. Bioslurry, rich in N, P, K and beneficial microorganisms, combined with zinc oxide nanoparticles synthesized through eco-friendly methods, demonstrates remarkable soil improvement capabilities. Their synergistic effects include enhanced nutrient availability through increased soil enzymatic activities, improved soil structure via stable aggregate formation, stimulated microbial activity particularly beneficial groups, enhanced water retention due to increased organic matter and modified soil surface properties and reduced soil pH fluctuations. These mechanisms significantly impact soil physico-chemical properties including cation exchange capacity, electrical conductivity and nutrient dynamics. This review analyses these effects and their implications for sustainable agricultural practices, focusing on crop yield improvements, reduced chemical fertilizer dependence and enhanced plant stress tolerance. Knowledge gaps such as long-term nanoparticle accumulation effects and impacts on non-target organisms are identified. Future research directions include optimizing bioslurry-nanoparticle ratios for various soil types and developing "smart" nanoparticle-enabled biofertilizers with controlled release properties. This innovative approach contributes to environmentally friendly farming practices, potentially enhancing global food security and supporting sustainable agriculture transitions. The integration of bioslurry and biogenic nanoparticles presents a promising solution to soil degradation and agricultural sustainability challenges.
Asunto(s)
Agricultura , Nanopartículas , Suelo , Suelo/química , Nanopartículas/química , Agricultura/métodos , Fertilizantes , Microbiología del SueloRESUMEN
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial-microbe-plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial-microbe-plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study's nexus, more insights on the carbon nanodot-microbe-plant nexus were discussed along with the role of the new frontier in nano-tellurium-microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.
RESUMEN
Pseudomonas bacteria are renowned for their remarkable capacity to synthesize antibiotics, namely mupirocin, gluconic acid, pyrrolnitrin, and 2,4-diacetylphloroglucinol (DAPG). While these substances are extensively employed in agricultural biotechnology to safeguard plants against harmful bacteria and fungi, their potential for human medicine and healthcare remains highly promising for common science. However, the challenge of obtaining stable producers that yield higher quantities of these antibiotics continues to be a pertinent concern in modern biotechnology. Although the interest in antibiotics of Pseudomonas bacteria has persisted over the past century, many uncertainties still surround the regulation of the biosynthetic pathways of these compounds. Thus, the present review comprehensively studies the genetic organization and regulation of the biosynthesis of these antibiotics and provides a comprehensive summary of the genetic organization of antibiotic biosynthesis pathways in pseudomonas strains, appealing to both molecular biologists and biotechnologists. In addition, attention is also paid to the application of antibiotics in plant protection.
RESUMEN
The increasing use of nanoparticles is driving the growth of research on their effects on living organisms. However, studies on the effects of nanoparticles on cellular respiration are still limited. The remodeling of cellular-respiration-related indices in plants induced by zinc oxide nanoparticles (nnZnO) and its bulk form (blZnO) was investigated for the first time. For this purpose, barley (Hordeum vulgare L.) seedlings were grown hydroponically for one week with the addition of test compounds at concentrations of 0, 0.3, 2, and 10â¯mgâ¯mL-1. The results showed that a low concentration (0.3â¯mgâ¯mL-1) of blZnO did not cause significant changes in the respiration efficiency, ATP content, and total reactive oxygen species (ROS) content in leaf tissues. Moreover, a dose of 0.3â¯mgâ¯mL-1 nnZnO increased respiration efficiency in both leaves (17â¯%) and roots (38â¯%). Under the influence of blZnO and nnZnO at medium (2â¯mgâ¯mL-1) and high (10â¯mgâ¯mL-1) concentrations, a dose-dependent decrease in respiration efficiency from 28â¯% to 87â¯% was observed. Moreover, the negative effect was greater under the influence of nnZnO. The gene transcription of the subunits of the mitochondria electron transport chain (ETC) changed mainly only under the influence of nnZnO in high concentration. Expression of the ATPase subunit gene, atp1, increased slightly (by 36â¯%) in leaf tissue under the influence of medium and high concentrations of test compounds, whereas in the root tissues, the atp1 mRNA level decreased significantly (1.6-2.9 times) in all treatments. A dramatic decrease (1.5-2.4 times) in ATP content was also detected in the roots. Against the background of overexpression of the AOX1d1 gene, an isoform of alternative oxidase (AOX), the total ROS content in leaves decreased (with the exception of 10â¯mgâ¯mL-1 nnZnO). However, in the roots, where the pressure of the stress factor is higher, there was a significant increase in ROS levels, with a maximum six-fold increase under 10â¯mgâ¯mL-1 nnZnO. A significant decrease in transcript levels of the pentose phosphate pathway and glycolytic enzymes was also shown in the root tissues compared to leaves. Thus, the disruption of oxidative phosphorylation leads to a decrease in ATP synthesis and an increase in ROS production; concomitantly reducing the efficiency of cellular respiration.
Asunto(s)
Respiración de la Célula , Hordeum , Hojas de la Planta , Raíces de Plantas , Especies Reactivas de Oxígeno , Óxido de Zinc , Óxido de Zinc/toxicidad , Hordeum/efectos de los fármacos , Hordeum/genética , Hojas de la Planta/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Raíces de Plantas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Plantones/efectos de los fármacos , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidad , Oxidorreductasas/genética , Oxidorreductasas/metabolismoRESUMEN
Currently, climate change-related environmental issues associated with agriculture is alarming and poses a potential risk to global food security, causing significant global concern as a result [...].
RESUMEN
Coastal cities are major centers of economic activity, which at the same time has negative consequences for the environment. The present study aimed to determine the concentrations and sources of PTEs in the urban soils of Taganrog, as well as to assess the ecological and human health risks. A total of 47 urban and 5 background topsoils samples were analyzed by ICP-MS and ICP-AES. A significant excess of Cu, Zn, and Sb was noted in urban soils compared to the upper continental crust and average world-soil (1.7-2.9 times). Statistical analysis showed that the elements in soils were of geogenic, mixed and anthropogenic origin. According to the single pollution index (PI), the greatest danger of soil pollution was represented by anthropogenic elements, namely Cu, W, Pb, Zn, Cd, and Sn, the levels of which were increased in residential and industrial areas. The median contents of As, Mn, Cr, Sr, Mo, Sb, Cu, W, Pb, and Zn were 1.1-2.1 times higher, while Cd and Sn were 2.5 folds higher in the urban soils compared to the background ones. The total pollution index (ZC) showed that only 15% of the soils had high level of pollution, which is typical for the industrial areas. Overall ecological risks were negligible or low in 92% of soils, and were mainly due to elevated levels of Cu, Zn, As, and Pb. Non-carcinogenic risks to humans were mainly related to exposure to La and Pb. The hazard index (HI) values for all PTEs were less than ten, indicating that overall non-carcinogenic risk for adults and children was low-to-moderate and, moderate, respectively. The total carcinogenic risk (TCR) exceeded threshold and corresponded to low risk, with Pb, As, and Co being the most important contributors. Thus, the industrial activities of Taganrog is the main source of priority pollutants.
Asunto(s)
Ciudades , Monitoreo del Ambiente , Contaminantes del Suelo , Medición de Riesgo , Contaminantes del Suelo/análisis , Humanos , Suelo/química , Metales Pesados/análisisRESUMEN
Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.
RESUMEN
A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.
Asunto(s)
Óxido de Zinc , Estrés Salino , Estrés Fisiológico , Reguladores del Crecimiento de las Plantas/farmacología , Antioxidantes/metabolismo , SalinidadRESUMEN
Soil cracking can significantly alter the water and nutrient migration pathways in the soil, influencing plant growth and development. While biochar usage has effectively addressed soil cracking, the feasibility of using less energy-intensive hydrochars in desiccating soils remains unexplored. This study investigates the impact of wood and peanut shell hydrochars on the desiccation cracking characteristics of clayey soil. A series of controlled environmental laboratory incubations with regular imaging was conducted to determine crack development's dynamic in unamended and hydrochar-amended soils. The results reveal that the addition of wood hydrochar at 2% and 4% dosage reduced the crack intensity factor (CIF) by 22% and 43%, respectively, compared to the unamended control soil. Similarly, the inclusion of peanut shell hydrochar at 2% and 4% lowered the CIF by 22% and 51%, respectively. The presence of hydrophilic groups on the surface of hydrochars, such as O-H, CH, and C-O-C, enhanced the water retention capacity, as confirmed by Fourier-transform infrared analysis. The CIF decrease is attributed to mitigated water evaporation rates, enabled by enhanced water retention within the hydrochar pore spaces. These findings are supported by scanning electron microscopy analyses of the hydrochar morphology. Despite CIF reduction with hydrochar incorporation, the crack length density (CLD) increased across all hydrochar-amended series. In contrast to unamended soil which exhibited pronounced widening of large cracks and extensive inter-pore voids, the incorporation of hydrochar resulted in higher CLD due to the formation of finer interconnecting crack meshes. Consequently, the unamended control soil suffered greater water loss due to heightened evaporation rates. This study sheds new light on the potential of hydrochars in addressing desiccation-induced soil cracking and its implications for water conservation.
Asunto(s)
Arachis , Arcilla , Desecación , Suelo , Madera , Madera/química , Suelo/química , Arcilla/química , Agua/química , Carbón Orgánico/químicaRESUMEN
Bioremediation of surfactants in water bodies holds significant ecological importance as they are contaminants of emerging concern posing substantial threats to the aquatic environment. Microbes exhibiting special ability in terms of bioremediation of contaminants have always been reported to thrive in extraordinary environmental conditions that can be extreme in terms of temperature, lack of nutrients, and salinity. Therefore, in the present investigation, a total of 46 bacterial isolates were isolated from the Indian sector of the Southern Ocean and screened for degradation of sodium dodecyl sulphate (SDS). Further, two Gram-positive psychrotolerant bacterial strains, ASOI-01 and ASOI-02 were identified with significant SDS degradation potential. These isolates were further studied for growth optimization under different environmental conditions. The strains were characterized as Staphylococcus saprophyticus and Bacillus pumilus based on morphological, biochemical, and molecular (16S RNA gene) characteristics. The study reports 88.9% and 93.4% degradation of SDS at a concentration of 100 mgL-1, at 20 °C, and pH 7 by S. saprophyticus ASOI-01 and B. pumilus ASOI-02, respectively. The experiments were also conducted in wastewater samples where a slight reduction in degradation efficiency was observed with strains ASOI-01 and ASOI-02 exhibiting 76.83 and 64.93% degradation of SDS respectively. This study infers that these bacteria can be used for the bioremediation of anionic surfactants from water bodies and establishes the potential of extremophilic microbes for the utilization of sustainable wastewater management.
Asunto(s)
Bacillus pumilus , Biodegradación Ambiental , Agua de Mar , Dodecil Sulfato de Sodio , Staphylococcus saprophyticus , Dodecil Sulfato de Sodio/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Bacillus pumilus/aislamiento & purificación , Bacillus pumilus/clasificación , Staphylococcus saprophyticus/genética , Staphylococcus saprophyticus/aislamiento & purificación , Staphylococcus saprophyticus/metabolismo , Staphylococcus saprophyticus/clasificación , Agua de Mar/microbiología , Tensoactivos/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales/microbiologíaRESUMEN
Global crop protection and food security have become critical issues to achieve the 'Zero Hunger' goal in recent years, as significant crop damage is primarily caused by biotic factors. Applying nanoparticles in agriculture could enhance crop yield. Nano-silver, or AgNPs, have colossal importance in many fields like biomedical, agriculture, and the environment due to their antimicrobial potential. In this context, nano-silver was fabricated by Citrus medica L. (Cm) fruit juice, detected visually and by UV-Vis spectrophotometric analysis. Further, AgNPs were characterized by advanced techniques. UV-Vis spectroscopic analysis revealed absorbance spectra at around 487 nm. The zeta potential measurement value was noted as -23.7 mV. Spectral analysis by FT-IR proved the capping of the acidic groups. In contrast, the XRD analysis showed the Miller indices like the face-centered cubic (fcc) crystalline structure. NTA revealed a mean size of 35 nm for nano-silver with a 2.4 × 108 particles mL-1 concentration. TEM analysis demonstrated spherical Cm-AgNPs with 20-30 nm sizes. The focus of this research was to evaluate the antifungal activity of biogenic AgNPs against post-harvest pathogenic fungi, including Aspergillus niger, A. flavus, and Alternaria alternata. The Cm-AgNPs showed significant antifungal activity in the order of A. niger > A. flavus > A. alternata. The biogenic Cm-AgNPs can be used for the inhibition of toxigenic fungi.
RESUMEN
Diabetes mellitus (DM), a metabolic and endocrine condition, poses a serious threat to human health and longevity. The emerging role of gut microbiome associated with bioactive compounds has recently created a new hope for DM treatment. UHPLC-HRMS methods were used to identify these compounds in a poly herbal ethanolic extract (PHE). The effects of PHE on body weight (BW), fasting blood glucose (FBG) level, gut microbiota, fecal short-chain fatty acids (SCFAs) production, and the correlation between DM-related indices and gut microbes, in rats were investigated. Chebulic acid (0.368%), gallic acid (0.469%), andrographolide (1.304%), berberine (6.442%), and numerous polysaccharides were the most representative constituents in PHE. A more significant BW gain and a reduction in FBG level towards normal of PHE 600 mg/kg treated rats group were resulted at the end of 28th days of the study. Moreover, the composition of the gut microbiota corroborated the study's hypothesis, as evidenced by an increased ratio of Bacteroidetes to Firmicutes and some beneficial microbial species, including Prevotella copri and Lactobacillus hamster. The relative abundance of Bifidobacterium pseudolongum, Ruminococcus bromii, and Blautia producta was found to decline in PHE treatment groups as compared to diabetic group. The abundance of beneficial bacteria in PHE 600 mg/kg treatment group was concurrently associated with increased SCFAs concentrations of acetate and propionate (7.26 nmol/g and 4.13 nmol/g). The findings of this study suggest a promising approach to prevent DM by demonstrating that these naturally occurring compounds decreased FBG levels by increasing SCFAs content and SCFAs producing gut microbiota.
RESUMEN
Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).
Asunto(s)
Carbón Orgánico , Sequías , Edición Génica , Agricultura , Productos AgrícolasRESUMEN
The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.
Asunto(s)
Restauración y Remediación Ambiental , Nanopartículas , Nanoestructuras , Plásticos , Carbón OrgánicoRESUMEN
Developed areas of the coal industry are subjected to long-term anthropogenic impacts from the input and accumulation of overburdened coal material, containing potentially toxic heavy metals and metalloids (HMM). For the first time, comprehensive studies of soils and plants in the territory of the Donetsk coal basin were carried out using X-ray fluorescence, atomic absorption analysis, and electron microscopy. The observed changes in the soil redox conditions were characterized by a high sulfur content, and formations of new microphases of S-containing compounds: FeS2, PbFe6(SO4)4(OH)12, ZnSO4·nH2O, revealed the presence of technogenic salinization, increased Сorg content, and low pH contents. Exceedances of soil maximum permissible concentrations of Pb, Zn, Cu, and As in areas affected by coal dumps were apparent. As a consequence of long-term transformation of the environment with changes in properties and chemical pollution, a phytotoxic effect was revealed in Phragmites australis (Cav.) Trin. ex Steud, accompanied by changes in ultrastructural and organization features of roots and leaves such as increases in root diameters and thickness of leaf blades. The changes in the ultrastructure of cell organelles: a violation of the grana formation process, an increase in the number of plastoglobules, a decrease in the number of mitochondrial cristae, and a reduction in the electron density of the matrix in peroxisomes were also observed. The accumulation of large electron-dense inclusions and membrane fragments in cell vacuoles was observed. Such ultrastructural changes may indicate the existence of a P. australis ecotype due to its long-term adaptation to the disturbed environment.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Poaceae/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/análisis , Carbón Mineral , Metales Pesados/análisisRESUMEN
This study is carried out to understand the degree of soil pollution, transport mechanism, and distribution pattern of potentially toxic elements (PTEs), including the exposure effects on human health. Towards this, topsoil samples were collected from the Saman wetland and surrounding agricultural fields in the Gangetic plain, India. The results show that the mean concentration of Cu, Hg, Zn, Pb, Th, As, U, and Cd of both soil types exceed the natural background values. The multivariate analysis suggests the soils are moderately contaminated with As, Cd, Zn, Pb, and Hg (possibly from anthropogenic sources) and heavily contaminated with Th and U, likely ascended from geogenic sources. The GIS-based geostatistical plots coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) apportion the sources of these toxic elements, which vary greatly and are closely correlated to the geogenic processes and local anthropogenic sources like pesticides and agrochemicals. The health risk assessment revealed that the cumulative hazard index (HI) values of PTEs are lower than the safe level, suggesting no significant noncarcinogenic effect for adults and children. However, excess cancer risk (ECR) values exceed the permissible limit (1 × 10-6), signifying that exposure to the toxic element concentration may cause cancer in the exposed population, most probably in the children subpopulation. Thus, this study highlights the importance of local compliance, ensuring the quality checks and management policies in using pesticides and other agrochemicals containing PTEs to control the imposed cancer risks.
Asunto(s)
Mercurio , Metales Pesados , Neoplasias , Plaguicidas , Contaminantes del Suelo , Adulto , Niño , Humanos , Suelo , Metales Pesados/análisis , Humedales , Cadmio/análisis , Plomo/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Mercurio/análisis , Medición de Riesgo , Plaguicidas/análisis , ChinaRESUMEN
Present study included technological methods that made it possible to synthesize CdO nanoparticles and carry out their qualitative and quantitative diagnostics, confirming the as-prepared CdO nanoparticles (NPs) were spherical and had a size of 25 nm. Then, under the conditions of the model experiment the effect of CdO in macro and nanosized particles on absorption, transformation, and structural and functional changes occurring in cells and tissues of Hordeum vulgare L. (spring barley) during its ontogenesis was analyzed. Different analytical techniques were used to detect the transformation of CdO forms: Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray fluorescence analysis (XRF), Scanning electron microscopy (SEM-EDXMA and TEM), X-ray diffraction (XRD), and X-ray absorption fine structure, consists of XANES - X-ray absorption near edge structure, and EXAFS - Extended X-ray absorption fine structure. Quantitative differences in the elemental chemical composition of barley root and leaf samples were observed. The predominant root uptake of Cd was revealed. CdO-NPs were found to penetrate deeply into barley plant tissues, where they accumulated and formed new mineral phases such as Cd5(PO4)3Cl and CdSO4 according to XRD analysis. The molecular-structural state of the local Cd environment in plant samples corresponding to Cd-O and Cd-Cd. The toxicity of CdO-NPs was found to significantly affect the morphology of intracellular structures are the main organelles of photosynthesis therefore, destructive changes in them obviously reduce the level of metabolic processes ensuring the growth of plants. This study is an attempt to show results how it is possible to combine some instrumental techniques to characterize and behavior of NPs in complex matrices of living organisms.
Asunto(s)
Compuestos de Cadmio , Hordeum , Nanopartículas del Metal , Nanopartículas , Hordeum/metabolismo , Cadmio , Óxidos/química , Nanopartículas/toxicidad , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Antibacterianos/farmacología , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/químicaRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, persistent organic pollutants that threaten ecosystems and human health. Consistent monitoring is essential to minimize the entry of PAHs into plants and reduce food chain contamination. PAHs infiltrate plants through multiple pathways, causing detrimental effects and triggering diverse plant responses, ultimately increasing either toxicity or tolerance. Primary plant detoxification processes include enzymatic transformation, conjugation, and accumulation of contaminants in cell walls/vacuoles. Plants also play a crucial role in stimulating microbial PAHs degradation by producing root exudates, enhancing bioavailability, supplying nutrients, and promoting soil microbial diversity and activity. Thus, synergistic plant-microbe interactions efficiently decrease PAHs uptake by plants and, thereby, their accumulation along the food chain. This review highlights PAHs uptake pathways and their overall fate as contaminants of emerging concern (CEC). Understanding plant uptake mechanisms, responses to contaminants, and interactions with rhizosphere microbiota is vital for addressing PAH pollution in soil and ensuring food safety and quality.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Suelo , Ecosistema , Contaminantes del Suelo/metabolismo , Plantas/metabolismo , Biodegradación AmbientalRESUMEN
The changing global climate have given rise to abiotic stresses that adversely affect the metabolic activities of plants, limit their growth, and agricultural output posing a serious threat to food production. The abiotic stresses commonly lead to production of reactive oxygen species (ROS) that results in cellular oxidation. Over the course of evolution, plants have devised efficient enzymatic and non-enzymatic anti-oxidative strategies to counteract harmful effects of ROS. Among the emerging non-enzymatic anti-oxidative technologies, the chloroplast lipophilic antioxidant vitamin A (Tocopherol) shows great promise. Working in coordination with the other cellular antioxidant machinery, it scavenges ROS, prevents lipid peroxidation, regulates stable cellular redox conditions, simulates signal cascades, improves membrane stability, confers photoprotection and enhances resistance against abiotic stresses. The amount of tocopherol production varies based on the severity of stress and its proposed mechanism of action involves arresting lipid peroxidation while quenching singlet oxygen species and lipid peroxyl radicals. Additionally, studies have demonstrated its coordination with other cellular antioxidants and phytohormones. Despite its significance, the precise mechanism of tocopherol action and signaling coordination are not yet fully understood. To bridge this knowledge gap, the present review aims to explore and understand the biosynthesis and antioxidant functions of Vitamin E, along with its signal transduction and stress regulation capacities and responses. Furthermore, the review delves into the light harvesting and photoprotection capabilities of tocopherol. By providing insights into these domains, this review offers new opportunities and avenues for using tocopherol in the management of abiotic stresses in agriculture.