Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Atmos Pollut Res ; 13(11): 101594, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36407654

RESUMEN

Nowadays, there has been a substantial proliferation in the use of low-cost particulate matter (PM) sensors and facilitating as an indicator of overall air quality. However, during COVID-19 epidemics, air pollution sources have been deteriorated significantly, and given offer to evaluate the impact of COVID-19 on air quality in the world's most polluted city: Delhi, India. To address low-cost PM sensors, this study aimed to a) conduct a long-term field inter-comparison of twenty-two (22) low-cost PM sensors with reference instruments over 10-month period (evaluation period) spanning months from May 2019 to February 2020; b) trend of PM mass and number count; and c) probable local and regional sources in Delhi during Pre-CVOID (P-COVID) periods. The comparison of low-cost PM sensors with reference instruments results found with R2 ranging between 0.74 and 0.95 for all sites and confirm that PM sensors can be a useful tool for PM monitoring network in Delhi. Relative reductions in PM2.5 and particle number count (PNC) due to COVID-outbreaks showed in the range between (2-5%) and (4-13%), respectively, as compared to the P-COVID periods. The cluster analysis reveals air masses originated ∼52% from local, while ∼48% from regional sources in P-COVID and PM levels are encountered 47% and 66-70% from local and regional sources, respectively. Overall results suggest that low-cost PM sensors can be used as an unprecedented aid in air quality applications, and improving non-attainment cities in India, and that policy makers can attempt to revise guidelines for clean air.

2.
Bioresour Technol ; 360: 127577, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35792331

RESUMEN

Rice straw hydrolysate (RSH) prepared at room temperature was found to be rich in silica (140 ± 4.1 mg L-1) and other nutrients (nitrate-N: 160 ± 4.3 mg L-1, total dissolve phosphate: 164 ± 6.7 mg L-1, ammoniacal-N: 439.8 ± 17 mg L-1). The aim of this work was to study four RSH dilutions (10, 30, 50, 70% v/v) to cultivate Navicula sp. with modified ASN-III as a control. The best result was achieved in 30% RSH in terms ofdoubling time (d = 1.49 days) and growth rate (µmax = 0.46 day-1). Compared to control, specific growth rate and biomass productivity were increased by 2.93 folds and 1.85 folds, respectively. Cultivation in 5 L reactor with optimized 30% RSH yielded frustule (54.2 ± 1.9%), carbohydrate (12.4 ± 1.2%), lipid (18.9 ± 1.4%), and protein (8.2 ± 0.6%). The residual solid fraction showed 18.99% increased theoretical methane yield than raw rice straw. Overall, the present process offers a sustainable solution to manage rice straw residue and recover nanoporous silica.


Asunto(s)
Oryza , Biomasa , Hidrólisis , Metano/química , Oryza/química , Dióxido de Silicio
3.
Sci Rep ; 12(1): 11704, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810201

RESUMEN

In this paper, a comparative analysis between the hand-held refractometer and other methods (TKN and CHNS) was accomplished for the estimation of nitrogen percentage (N%) in urea, nano urea fertilizer, and diesel exhaust fluid (DEF) solution. In order to compare the performance of all methods/devices, the detection of N% in different concentrations of urea, nano urea, and DEF were evaluated in terms of their linearity. The most important finding of this study was that the refractometer-based device revealed a good linear coefficient up to 40% urea solution (R2 = 0.99918) among other approaches, which means the estimation of N% is more close to the theoretical value. Moreover, the refractometer has detected the urea, nano urea, and DEF samples within 3 s which were quite fast as compared to other tested methods and no requirement of any chemicals during the sample preparation and analyses. Thus, the finding of this study suggests that a hand-held urea refractometer-based portable device can be used for onsite N% determination by the fertilizer and DEF manufacturing industries and their customers due to its low cost, low power requirement, reliable estimation, rapid N% detection, and its environmental suitability.


Asunto(s)
Nitrógeno , Urea , Fertilizantes/análisis , Nitrógeno/análisis , Refractometría
5.
Cells ; 11(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35883653

RESUMEN

Natural products play a critical role in the discovery and development of numerous drugs for the treatment of various types of cancer. These phytochemicals have demonstrated anti-carcinogenic properties by interfering with the initiation, development, and progression of cancer through altering various mechanisms such as cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Treating multifactorial diseases, such as cancer with agents targeting a single target, might lead to limited success and, in many cases, unsatisfactory outcomes. Various epidemiological studies have shown that the steady consumption of fruits and vegetables is intensely associated with a reduced risk of cancer. Since ancient period, plants, herbs, and other natural products have been used as healing agents. Likewise, most of the medicinal ingredients accessible today are originated from the natural resources. Regardless of achievements, developing bioactive compounds and drugs from natural products has remained challenging, in part because of the problem associated with large-scale sequestration and mechanistic understanding. With significant progress in the landscape of cancer therapy and the rising use of cutting-edge technologies, we may have come to a crossroads to review approaches to identify the potential natural products and investigate their therapeutic efficacy. In the present review, we summarize the recent developments in natural products-based cancer research and its application in generating novel systemic strategies with a focus on underlying molecular mechanisms in solid cancer.


Asunto(s)
Productos Biológicos , Neoplasias , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Fitoquímicos/uso terapéutico
6.
Nanomaterials (Basel) ; 12(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35745438

RESUMEN

In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.

7.
Sci Rep ; 12(1): 6938, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484376

RESUMEN

Sustainable and precision agriculture practices are essential to meet the global food demand with minimal impact on soil, air and water. In the present study, nanofertilizers of nitrogen and zinc was used with the organic farming practice under field condition for the cereal i.e. wheat, pearl millet, and oil seed crops i.e. mustard, sesame. The field trial was compared with chemical fertilizer based agricultural settings. A total of 160 field demonstrations were conducted at two locations: Khaliyawas (28.19° N, 76.76° E) and Khatawali (28.22° N, 76.76° E) of Haryana, India with a total area of 1225 acre and randomized block design. It was found that an average yield was recorded 5.35% higher in wheat, 24.24% higher yield in sesame, 4.2% higher in pearl millet and 8.4% higher yield in mustard by applying nanofertilizers of nitrogen and zinc along with the organic farming practice. The increased yield corroborated with the development parameters of plants such as wheat tillers, ear head length of pearl millet, capsule number per plant in sesame and siliquae number per plant in mustard. The trial observation suggests that the fields with applied organic manure, bio-fertilizer and nanofertilizers in combination resulted in higher yield and better plant growth performances when compared to the fields under conventional chemical fertilizer practice. The results suggest that the intervention of nanotechnology along with organic farming practice can help in minimizing the mass volume requirement of conventional chemical fertilizer while improving crop production.


Asunto(s)
Pennisetum , Sesamum , Productos Agrícolas , Grano Comestible , Fertilizantes , Nitrógeno , Agricultura Orgánica , Semillas , Triticum , Zinc
8.
J Air Waste Manag Assoc ; 71(11): 1347-1360, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33591244

RESUMEN

Air quality is a global challenge issue, and many regions of the world, such as India, are experiencing daunting challenges. An important aspect is to identify and then control the emissions from major contributing sources. To advance this aspect, this paper describes an air quality network that has been set up in the National Capital Territory of Delhi (NCT-Delhi) to identify major contributing source categories in real-time. The various components include an innovative cloud-based dashboard to compile the data in real-time from a series of PM instruments (Beta Attenuation Monitors (BAM)) and a low-cost sensor network (22 APT- MAXIMA sensors). Furthermore, at one of the locations (urban site), three real-time chemical speciation monitors are installed to provide elemental speciation (30 elements), elemental carbon (EC), and organic carbon (OC) data. PM2.5 concentrations at different sites (urban, industrial, and background) were compared to the BAM measurements over an 8-month period from May 2019 to February 2020; spanning the summer, monsoon, autumn, and winter seasons in Delhi. The APT sensor measurements were well correlated to the BAM measurements, with R2 values ranging between 0.84 and 0.95 for all sites. This validated that the APT-MAXIMA low-cost sensors can be a useful tool for distributed monitoring of PM2.5 levels. The mean PM2.5 concentrations showed a trend with winter (Dec, Jan, Feb: 205.2 ± 95.1 µg m-3) and autumn (Oct, Nov: 171.7 ± 128.3 µg m-3) highs and summer (May, Jun: 64.6 ± 57.2 µg m-3) and monsoon (Jul, Aug, Sep: 27.6 ± 16.7 µg m-3) lows. The bivariate polar plot reveals high PM2.5 levels originated from local/regional combustion sources located east and south-west of the urban site, especially when high PM2.5 episodes are encountered during the festival season and other smog episodes.Implications: Low-cost sensors are useful for distributed monitoring under both low and high pollution conditions. A cloud-based dashboard system provided real-time, remote access to the data and in the visualization of air quality in the entire region. The real-time data availability on the cloud enabled establishing hot-spot regions of air pollution, spatial variation of PM2.5, real-time source apportionment, and health risk estimates to benefit both policy makers, and the general public.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , India , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
9.
Plant Physiol Biochem ; 159: 53-66, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33338820

RESUMEN

We report a novel chitosan-silicon nanofertilizer (CS-Si NF) wherein chitosan-tripolyphosphate (TPP) nano-matrix has been used to encapsulate silicon (Si) for its slow release. It was synthesied by ionic gelation method and characterized by dynamic light scattering (DLS), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectrophotometry (AAS). The developed CS-Si NF exhibited slow release of Si and promoted gowth and yield in maize crop. Seeds primed with different concentrations of CS-Si NF (0.04-0.12%, w/v) exhibited up to 3.7 fold increased seedling vigour index (SVI) as compared with SiO2. Its foliar spray significantly induced antioxidant-defence enzymes' activities and equilibrated cellular redox homeostasis by balancing O2-1 and H2O2 content in leaf as compared with SiO2. Application of nanofertilizer (0.01-0.16%, w/v) stirred total chlorophyll content (21.01-25.11 mg/g) and leaf area (159.34-166.96 cm2) to expedite photosynthesis as compared with SiO2. In field experiment, 0.08% CS-Si NF resulted in 43.4% higher yield/plot and 0.04% concentration gave 45% higher test weight as compared with SiO2. Fecund and myriad effects of developed nanofertilizer over SiO2 could be attributed to slow/protective release of Si from nanofertilizer. Overall, results decipher the enormous potential of CS-Si NF for its use as a next generation nanofertilizer for sustainable agriculture.


Asunto(s)
Agricultura , Quitosano , Dióxido de Silicio , Zea mays , Agricultura/métodos , Quitosano/farmacología , Fertilizantes/normas , Peróxido de Hidrógeno/metabolismo , Dióxido de Silicio/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Zea mays/efectos de los fármacos
10.
RSC Adv ; 10(40): 23759-23766, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774845

RESUMEN

Radionuclide-stimulated therapy (RaST), which is enhanced by Cherenkov radiation, has enabled deep tissue stimulation of UV photosensitizers, providing a new path for cancer treatment. Previous reports have shown UV-active titanium dioxide (TiO2) nanoparticles (NPs) modified with transferrin inhibit tumour growth after orthogonal treatment with Cherenkov radiation-emitting radionuclides such as 18F-fluorodeoxyglucose (FDG). However, poor understanding of TiO2 NP parameters on reactive oxygen species (ROS) generation and particle distribution limits effective therapy. Here we sought to delineate the effects of crystal phase and core TiO2 crystal dimension (cTd) on ROS production and particle morphology. We prepared Transferrin (Tf)-TiO2 nanoaggregates (NAGs) using solvothermally synthesized cTd sizes from 5 to 1000 nm diameter and holo- or apo-transferrin. Holo-transferrin was unable to stabilize TiO2 NPs while apo-transferrin stabilized TiO2 into uniform nanoaggregates (NAGs), which were invariant with differing cTd, averaging 116 ± 1.04 nm for cTds below 100 nm. ROS production increased from 5 to 25 nm cTd, attaining a peak at 25 nm before decreasing with larger sizes. The supra-25 nm ROS production decrease was partially driven by a ~1/r 3 surface area decline. Additionally, amorphous TiO2 of equal core size exhibited a 2.6-fold increase in ROS production compared to anatase NAGs, although limited stability halted further use. Although both 5 and 25 nm anatase cTds formed similarly sized NAGs, 5 nm anatase showed a four-fold higher tumour-to-muscle ratio than the 25 nm NPs in tumour-bearing mice, demonstrating the intricate relationships between physical and biological properties of NAGs. The combined in vivo and ROS results demonstrate that anatase crystals and cTd size of 25 nm or less are ideal particle parameters to balance biodistribution with ROS production efficiency.

11.
Int J Biol Macromol ; 145: 226-234, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31866543

RESUMEN

We, herein, report the effect of chitosan nanofertilizer comprising of copper (Cu) and salicylic acid (SA) on source activity in maize. Seed treatment and foliar application of chitosan nanofertilizer significantly up-regulated the source activity in developing maize plants. Seed treatment with nanofertilizer induced 1.6 folds higher seedling vigour index, 1.7-3.0 folds higher activities of reserve food mobilizing enzymes in seedlings as compared with control. Foliar application of nanofertilizer (0.01-0.16%) statistically significantly increased the activities of antioxidant enzymes (1.06-1.91 folds), reduced malondialdehyde content and enhanced chlorophyll contents (2 folds) in leaves. Application of nanofertilizer remarkably induced sucrose translocation (2.5-3.5 folds) in internodes which gives subtle clue of higher remobilization of nutrients towards growing cob. The elusive bioactivities of nanofertilizer can be attributed to slow release and synergistic effects of Cu and SA. We claim that chitosan nanofertilizer has immense potential to promote source activity in maize for higher crop yield.


Asunto(s)
Quitosano/química , Cobre/farmacología , Nanoestructuras/química , Ácido Salicílico/farmacología , Plantones/efectos de los fármacos , Semillas/efectos de los fármacos , Zea mays/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Catalasa/metabolismo , Productos Agrícolas , Fertilizantes/análisis , Malondialdehído/antagonistas & inhibidores , Malondialdehído/metabolismo , Nanoestructuras/ultraestructura , Peroxidasa/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Sacarosa/metabolismo , Superóxido Dismutasa/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
12.
Plant Physiol Biochem ; 145: 64-74, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31665668

RESUMEN

Herein, we report zinc-functionalized thymol nanoemulsion (Zn-TNE) by sonication method and its characterization by DLS, HR-TEM, FEG-SEM-EDS, Cryo-FESEM, FTIR and AAS studies. Zn-TNE treated seeds bestowed better seedling vigor index and higher activities of seed stored food mobilizing enzymes (α-amylase and protease). Foliar application of Zn-TNE (0.01-0.06%, v/v) enhanced defense-antioxidant enzymes activities, balanced reactive oxygen species, induced higher content of chlorophyll-a, b and higher lignin deposition in soybean plants. In the field, Zn-TNE application (0.02-0.06%, v/v) significantly controlled bacterial pustule disease (PEDC value 28-79%) and increased grain yield up to 16.6% as compared with bulk thymol application and up to 50% from control. Disease control and higher yield in soybean could be explained by diverse bioactivities of Zn-TNE in maintaining cellular homeostasis of soybean plants. Study shows that Zn-TNE can further be maneuvered for slow delivery of other micronutrients for higher crop yield.


Asunto(s)
Producción de Cultivos , Glycine max , Timol , Zinc , Producción de Cultivos/métodos , Semillas/efectos de los fármacos , Glycine max/efectos de los fármacos , Glycine max/fisiología , Timol/farmacología , Zinc/farmacología
13.
ACS Appl Bio Mater ; 2(3): 1141-1147, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31214665

RESUMEN

Titanium dioxide (TiO2) nanoparticles have shown success as photosensitizers in the form of light-based cancer therapy called Cerenkov radiation induced therapy (CRIT). While TiO2 nanoparticles have been reported to be an effective therapeutic agent, there has been little work to control their functionalization and stability in aqueous suspension. In this work, the controlled coating of 25 nm diameter TiO2 nanoparticles with the glycoprotein transferrin (Tf) for application in CRIT was demonstrated using an electrospray system. Monodisperse nanoscale droplets containing TiO2 and Tf were dried during flight, coating the proteins on the surface of the metal oxide nanoparticles. Real-time scanning mobility particle sizing, dynamic light scattering, and transmission electron microscopy show efficient control of the Tf coating thickness when varying the droplet size and the ratio of Tf to TiO2 in the electrospray precursor suspension. Further, the functionality of Tf-coated TiO2 nanoparticles was demonstrated, and these particles were found to have enhanced targeting activity of Tf to the Tf receptor after electrospray processing. The electrospray-coated Tf/TiO2 particles were also found to be more effective at killing the multiple myeloma cell line MM1.S than that of nanoparticles prepared by other reported functionalization methods. In summary, this investigation not only provides a single-step functionalization technique for nanomaterials used in Cerenkov radiation induced therapy but also elucidates an electrospray coating technique for nanomaterials that can be used for a wide range of drug design and delivery purposes.

14.
Nanomedicine (Lond) ; 14(2): 169-182, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30730790

RESUMEN

AIM: CaCO3 nanoparticles (nano-CaCO3) can neutralize the acidic pHe of solid tumors, but the lack of intrinsic imaging signal precludes noninvasive monitoring of pH-perturbation in tumor microenvironment. We aim to develop a theranostic version of nano-CaCO3 to noninvasively monitor pH modulation and subsequent tumor response. MATERIALS & METHODS: We synthesized ferromagnetic core coated with CaCO3 (magnetite CaCO3). Magnetic resonance imaging (MRI) was used to determine the biodistribution and pH modulation using murine fibrosarcoma and breast cancer models. RESULTS: Magnetite CaCO3-MRI imaging showed that nano-CaCO3 rapidly raised tumor pHe, followed by excessive tumor-associated acid production after its clearance. Continuous nano-CaCO3 infusion could inhibit metastasis. CONCLUSION: Nano-CaCO3 exposure induces tumor metabolic reprogramming that could account for the failure of previous intermittent pH-modulation strategies to achieve sustainable therapeutic effect.


Asunto(s)
Carbonato de Calcio , Nanopartículas/química , Metástasis de la Neoplasia/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carbonato de Calcio/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Humanos , Masculino , Ratones , Tamaño de la Partícula , Nanomedicina Teranóstica
15.
Nanotechnology ; 30(22): 224001, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30699385

RESUMEN

Here, we demonstrate improved NO2 gas sensing properties based on reduced graphene oxide (rGO) decorated V2O5 thin film. Excluding the DC sputtering grown V2O5 thin film, rGO was spread over V2O5 thin film by the drop cast method. The formation of several p-n heterojunctions was greatly affected by the current-voltage relation of the rGO-decorated V2O5 thin film due to the p-type and n-type nature of rGO and V2O5, respectively. Initially with rGO decoration on V2O5 thin film, current decreased in comparison to the pristine V2O5 thin film, whereas depositing rGO film on a glass substrate drastically increased current. Among all sensors, only the rGO-decorated V2O5 sensor revealed a maximum NO2 gas sensing response for 100 ppm at 150 °C, and it achieved an approximately 61% higher response than the V2O5 sensor. The elaborate mechanism for an extremely high sensing response is attributed to the formation and modulation of p-n heterojunctions at the interface of rGO and V2O5. In addition, the presence of active sites like oxygenous functional groups on the rGO surface enhanced the sensing response. On that account, sensors based on rGO-decorated V2O5 thin film are highly suitable for the purpose of NO2 gas sensing. They enable the timely detection of the gas, further protecting the ecosystem from its harmful effects.

16.
Int J Biol Macromol ; 127: 126-135, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30610949

RESUMEN

Zinc deficient/or alkaline soil is globally widespread issue and cultivation of cereals in such soil results in severe depression in plant growth, higher disease incidence and lower grain yield. To address such problems, laboratory synthesized Zn-chitosan nanoparticles (NPs) were evaluated via seed priming and foliar application in maize plants. Zn-chitosan NPs (0.01-0.16%) showed strong in vitro antifungal and seedling growth promotry activities. Further, Zn-chitosan NPs exhibited significant disease control through strengthening of plant innate immunity by elevating antioxidant and defense enzymes, balancing of reactive oxygen species (ROS) and enhancing lignin accumulation. In field, seed treatment and foliar application of developed NPs (0.01-0.16%) significantly controlled Curvularia leaf spot (CLS) disease, increased grain yield from 20.5 to 39.8% and enriched the grain with zinc micronutrient from 41.27 to 62.21 µg/g dw. Results claim that Zn-chitosan NPs could be an effective growth promotry, disease controlling and micronutrient fortifying agent in maize crop.


Asunto(s)
Quitosano , Nanopartículas/química , Enfermedades de las Plantas , Inmunidad de la Planta/efectos de los fármacos , Zea mays , Zinc , Quitosano/química , Quitosano/farmacología , Producción de Cultivos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Zea mays/crecimiento & desarrollo , Zea mays/inmunología , Zea mays/microbiología , Zinc/química , Zinc/farmacología
17.
Int J Biol Macromol ; 123: 59-69, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389525

RESUMEN

In this work, salicylic acid-chitosan nanoparticles (SA-CS NPs) are reported as a biostimulant for promoting plant defense and growth in maize. SA-CS NPs were characterised for colloidal size distribution, functional group, surface chemistry, chemical composition, crystal structure and morphology. Investigation discloses a method of SA-CS NPs synthesis, release profile of SA from SA-CS NPs, antifungal and seedling growth promoting activities. Findings unveil that SA-CS NPs expressed significant physiological-biochemical responses in vitro and in vivo. The responses were recorded as elevated antioxidant-defense enzyme activities, balancing reactive oxygen species (ROS), cell wall reinforcement by lignin deposition, disease control and plant growth in maize. In field, 59.4% control of post-flowering stalk rot (PFSR) disease and 57.8% yield enhancement was evident in SA-CS NPs application compared to SA treatment. The obtained results claim commercial potential of SA-CS NPs as a biostimulant for plant disease control and higher yield.


Asunto(s)
Quitosano/química , Nanopartículas/química , Enfermedades de las Plantas/prevención & control , Ácido Salicílico/química , Zea mays/efectos de los fármacos , Antifúngicos/química , Antifúngicos/farmacología , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos
18.
Int J Nanomedicine ; 13: 7375-7393, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519021

RESUMEN

INTRODUCTION: Siliceous nanoparticles (NPs) have been extensively studied in nanomedicine due to their high biocompatibility and immense biomedical potential. Although numerous technologies have been developed, the synthesis of siliceous NPs for biomedical applications mainly relies on a few core technologies predominantly intended to produce spherical-shaped NPs. METHODS: In this context, the impact of different morphologies of siliceous NPs on biodistribution in vivo is limited. In the present study, we developed a novel technique based on an aerosol silane reactor to produce sintered silicon NPs of similar size but different surface areas due to distinct spherical subunits. Silica-converted particles were functionalized for radiolabeling with copper-64 (64Cu) to systematically analyze their behavior in the passive targeting of A431 tumor xenografts in mice after intravenous injection. RESULTS: While low nonspecific uptake was observed in most organs, the majority of particles were accumulated in the liver, spleen, and lung. Depending on the morphologies and function-alization, significant differences in the uptake profiles of the particles were observed. In terms of tumor uptake, spherical shapes with lower surface areas showed the highest accumulation and tumor-to-blood ratios of all investigated particles. CONCLUSION: This study highlights the importance of shape and fuctionalization of siliceous NPs on organ and tumor accumulation as significant factors for biomedical applications.


Asunto(s)
Aerosoles/química , Radioisótopos de Cobre/farmacocinética , Compuestos Heterocíclicos/farmacocinética , Nanopartículas/química , Dióxido de Silicio/química , Animales , Línea Celular Tumoral , Radioisótopos de Cobre/química , Dispersión Dinámica de Luz , Femenino , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo , Humanos , Ratones Desnudos , Nanopartículas/ultraestructura , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Control Release ; 286: 145-153, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30009893

RESUMEN

Focused ultrasound combined with microbubble-mediated intranasal delivery (FUSIN) is a new brain drug delivery technique. FUSIN utilizes the nasal route for direct nose-to-brain drug administration, thereby bypassing the blood-brain barrier (BBB) and minimizing systemic exposure. It also uses FUS-induced microbubble cavitation to enhance transport of intranasally (IN) administered agents to the FUS-targeted brain location. Previous studies have provided proof-of-concept data showing the feasibility of FUSIN to deliver dextran and the brain-derived neurotrophic factor to the caudate putamen of mouse brains. The objective of this study was to evaluate the biodistribution of IN administered gold nanoclusters (AuNCs) and assess the feasibility and short-term safety of FUSIN for the delivery of AuNCs to the brainstem. Three experiments were performed. First, the whole-body biodistribution of IN administered 64Cu-alloyed AuNCs (64Cu-AuNCs) was assessed using in vivo positron emission tomography/computed tomography (PET/CT) and verified with ex vivo gamma counting. Control mice were intravenously (IV) injected with the 64Cu-AuNCs. Second, 64Cu-AuNCs and Texas red-labeled AuNCs (TR-AuNCs) were used separately to evaluate FUSIN delivery outcome in the brain. 64Cu-AuNCs or TR-AuNCs were administered to mice through the nasal route, followed by FUS sonication at the brainstem in the presence of systemically injected microbubbles. The spatial distribution of 64Cu-AuNCs and TR-AuNCs were examined by autoradiography and fluorescence microscopy of ex vivo brain slices, respectively. Third, histological analysis was performed to evaluate any potential histological damage to the nose and brain after FUSIN treatment. The experimental results revealed that IN administration induced significantly lower 64Cu-AuNCs accumulation in the blood, lungs, liver, spleen, kidney, and heart compared with IV injection. FUSIN enhanced the delivery of 64Cu-AuNCs and TR-AuNCs at the FUS-targeted brain region compared with IN delivery alone. No histological-level tissue damage was detected in the nose, trigeminal nerve, and brain. These results suggest that FUSIN is a promising technique for noninvasive, spatially targeted, and safe delivery of nanoparticles to the brain with minimal systemic exposure.


Asunto(s)
Encéfalo/metabolismo , Medios de Contraste/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Oro/administración & dosificación , Microburbujas , Administración Intranasal , Animales , Barrera Hematoencefálica/metabolismo , Medios de Contraste/farmacocinética , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Oro/farmacocinética , Ratones Endogámicos C57BL , Tomografía Computarizada por Tomografía de Emisión de Positrones , Sonicación/métodos , Distribución Tisular , Xantenos/administración & dosificación , Xantenos/farmacocinética
20.
Nanotechnology ; 29(40): 404001, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-29998859

RESUMEN

2D materials are a promising new class of materials for next generation optoelectronic devices owing to their appealing optical and electrical properties. Pristine molybdenum disulfide (MoS2) is widely used in next generation photovoltaic and optoelectronic devices, but its low photo-dark current ratio prevents its use in highly efficient photo detection applications. Here, we decorated crumpled reduced graphene oxide (rGO) particles on a large-area vertically aligned MoS2 flake network to enhance the performance of the MoS2-based photodetector by forming multiple nanoscale p-n heterojunctions. The rGO/MoS2 device exhibited a significantly improved photoresponsivity of ∼2.10 A W-1 along with a good detectivity of ∼5 × 1011 Jones (Jones = cm Hz1/2/W) compared to that of the pristine MoS2 photodetector in ambient atmosphere. Moreover, the rGO/MoS2 photodetector showed a fast response of ∼18 ms with excellent stability and reproducibility in ambient air even after three months. The high performance of the photodetector is attributed to enhanced photoexcited carrier density and suppressed photo generated electron-hole recombination due to the strong local built-in electric field developed at the rGO/MoS2 interface. Our results showed that integration of rGO with MoS2 provides an efficient platform for photo detection applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA