Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(10): e0224011, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31647825

RESUMEN

Floodplain wetland ecosystems respond dynamically to flooding, fire and geomorphological processes. We employed a combined geomorphological and environmental proxy approach to assess allochthonous and autochthonous macro-charcoal accumulation in the Macquarie Marshes, Australia, with implications for the reconstruction of fire regimes and environmental conditions in large, open-system wetlands. After accounting for fluvial macro-charcoal flux (1.05 ± 0.32 no. cm-2 a-1), autochthonous macro-charcoal in ~1 m deep sediment profiles spanning ~1.7 ka were highly variable and inconsistent between cores and wetlands (concentrations from 0 to 438 no. cm-3, mean accumulation rates from 0 to 3.86 no. cm-2 a-1). A positive correlation existed between the number of recent fires, satellite-observed ignition points, and macro-charcoal concentrations at the surface of the wetlands. Sedimentology, geochemistry, and carbon stable isotopes (δ13C range -15 to -25 ‰) were similar in all cores from both wetlands and varied little with depth. Application of macro-charcoal and other environmental proxy techniques is inherently difficult in large, dynamic wetland systems due to variations in charcoal sources, sediment and charcoal deposition rates, and taphonomic processes. Major problems facing fire history reconstruction using macro-charcoal records in these wetlands include: (1) spatial and temporal variations in fire activity and ash and charcoal products within the wetlands, (2) variations in allochthonous inputs of charcoal from upstream sources, (3) tendency for geomorphic dynamism to affect flow dispersal and sediment and charcoal accumulation, and (4) propensity for post-depositional modification and/or destruction of macro-charcoal by flooding and taphonomic processes. Recognition of complex fire-climate-hydrology-vegetation interactions is essential. High-resolution, multifaceted approaches with reliable geochronologies are required to assess spatial and temporal patterns of fire and to reconstruct in order to interpret wetland fire regimes.


Asunto(s)
Carbón Orgánico/análisis , Ecosistema , Ambiente , Incendios , Inundaciones/estadística & datos numéricos , Sedimentos Geológicos/análisis , Humedales
2.
Sci Total Environ ; 663: 980-991, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30739866

RESUMEN

Wetland classification has become a primary tool to characterize and inventory wetland landscapes, but wetlands are difficult to classify because they straddle the terrestrial and aquatic boundary and occur in a variety of hydroclimatic and topographic settings. Presently, many ecological wetland classification schemes are focused on the 'hydrogeomorphic' unit, which attempts to account for the physical setting of a wetland. In many cases topographic terms (e.g. flats, slopes) rather than geomorphological terms (e.g. oxbow, floodplain) are used to characterize landforms, and little attempt is made to characterize the process-landform relationships within wetland landscapes. The current misrepresentation of product geomorphology (i.e. topographic rather than landform description) and underrepresentation of process geomorphology (i.e. lacking process-landform relationships) means that many current wetland classification schemes represent an incomplete and static attempt to characterize geomorphologically dynamic wetland landscapes. Here, we use examples from wetlands in the drylands of Africa, Australia, and North America to identify the capacity for adjustment (i.e. form and timescale of adjustment) of wetland landforms and we relate this capacity to the geomorphological concepts of sediment connectivity and landform sensitivity. We highlight how geomorphological insights into process-landform relationships and timescales of landform adjustment can add value to wetland classification efforts, with important implications for wetland management and ecosystem service delivery. We submit that geomorphology has a much larger role to play in wetland characterization and can enhance existing wetland classification schemes. More participation by the geomorphology community in wetland science and more awareness by the ecology community in recognizing and characterizing wetlands as dynamic landscapes will facilitate more effective wetland research and management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...