Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 21(8): 1017-1027, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34382857

RESUMEN

Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine whether environments are habitable, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science, and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Planetas
2.
Sci Rep ; 10(1): 7432, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366889

RESUMEN

To find potentially habitable exoplanets, space missions employ the habitable zone (HZ), which is the region around a star (or multiple stars) where standing bodies of water could exist on the surface of a rocky planet. Follow-up atmospheric characterization could yield biosignatures signifying life. Although most iterations of the HZ are agnostic regarding the nature of such life, a recent study argues that a complex life HZ would be considerably smaller than that used in classical definitions. Here, I use an advanced energy balance model to show that such an HZ would be considerably wider than originally predicted given revised CO2 limits and (for the first time) N2 respiration limits for complex life. The width of this complex life HZ (CLHZ) increases by ~35% from ~0.95-1.2 AU to 0.95-1.31 AU in our solar system. Similar extensions are shown for stars with stellar effective temperatures between 2,600-9,000 K. I define this CLHZ using lipid solubility theory, diving data, and results from animal laboratory experiments. I also discuss implications for biosignatures and technosignatures. Finally, I discuss the applicability of  the CLHZ and other HZ variants to the search for both simple and complex life.

3.
Icarus ; 281: 248-261, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30774148

RESUMEN

The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2-H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radiative-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ~75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

4.
Astrobiology ; 14(8): 714-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25061956

RESUMEN

Recent one-dimensional (globally averaged) climate model calculations by Goldblatt et al. (2013) suggest that increased atmospheric CO(2) could conceivably trigger a runaway greenhouse on present Earth if CO(2) concentrations were approximately 100 times higher than they are today. The new prediction runs contrary to previous calculations by Kasting and Ackerman (1986), which indicated that CO(2) increases could not trigger a runaway, even at Venus-like CO(2) concentrations. Goldblatt et al. argued that this different behavior is a consequence of updated absorption coefficients for H(2)O that make a runaway more likely. Here, we use a 1-D climate model with similar, up-to-date absorption coefficients, but employ a different methodology, to show that the older result is probably still valid, although our model nearly runs away at ∼12 preindustrial atmospheric levels of CO(2) when we use the most alarmist assumptions possible. However, we argue that Earth's real climate is probably stable given more realistic assumptions, although 3-D climate models will be required to verify this result. Potential CO(2) increases from fossil fuel burning are somewhat smaller than this, 10-fold or less, but such increases could still cause sufficient warming to make much of the planet uninhabitable by humans.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Efecto Invernadero , Desastres , Modelos Teóricos , Agua/química
5.
Proc Natl Acad Sci U S A ; 111(35): 12641-6, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-24277805

RESUMEN

The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.


Asunto(s)
Astronomía/instrumentación , Planetas , Estrellas Celestiales , Telescopios , Atmósfera/química , Planeta Tierra , Medio Ambiente Extraterrestre/química , Modelos Químicos , Sistema Solar , Análisis Espectral , Estados Unidos , United States National Aeronautics and Space Administration , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...