Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(5): e0285674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167310

RESUMEN

Metabarcoding is a powerful molecular tool for simultaneously surveying hundreds to thousands of species from a single sample, underpinning microbiome and environmental DNA (eDNA) methods. Deriving quantitative estimates of underlying biological communities from metabarcoding is critical for enhancing the utility of such approaches for health and conservation. Recent work has demonstrated that correcting for amplification biases in genetic metabarcoding data can yield quantitative estimates of template DNA concentrations. However, a major source of uncertainty in metabarcoding data stems from non-detections across technical PCR replicates where one replicate fails to detect a species observed in other replicates. Such non-detections are a special case of variability among technical replicates in metabarcoding data. While many sampling and amplification processes underlie observed variation in metabarcoding data, understanding the causes of non-detections is an important step in distinguishing signal from noise in metabarcoding studies. Here, we use both simulated and empirical data to 1) suggest how non-detections may arise in metabarcoding data, 2) outline steps to recognize uninformative data in practice, and 3) identify the conditions under which amplicon sequence data can reliably detect underlying biological signals. We show with both simulations and empirical data that, for a given species, the rate of non-detections among technical replicates is a function of both the template DNA concentration and species-specific amplification efficiency. Consequently, we conclude metabarcoding datasets are strongly affected by (1) deterministic amplification biases during PCR and (2) stochastic sampling of amplicons during sequencing-both of which we can model-but also by (3) stochastic sampling of rare molecules prior to PCR, which remains a frontier for quantitative metabarcoding. Our results highlight the importance of estimating species-specific amplification efficiencies and critically evaluating patterns of non-detection in metabarcoding datasets to better distinguish environmental signal from the noise inherent in molecular detections of rare targets.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN Ambiental , Código de Barras del ADN Taxonómico/métodos , ADN/genética , Reacción en Cadena de la Polimerasa/métodos , Incertidumbre , Biodiversidad
2.
Mitochondrial DNA B Resour ; 8(4): 475-478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035635

RESUMEN

The populations of native iguanas in the Caribbean Lesser Antilles are threatened by the wide occurrence and spread of non-native iguanas. Until recently, competitive hybridization was not believed to threaten the Saba Green Iguana, a subpopulation of Iguana iguana (Linnaeus, 1758) from the island of Saba. However, the arrival of non-native iguanas has put the native population at risk, leading to a change in the conservation status of the Saba Green Iguana to Critically Endangered, according to guidelines from the International Union for the Conservation of Nature. Here, we generated the complete mitogenome of the Saba Green Iguana using Oxford Nanopore long-read technology. The mitogenome is 16,626 bp long and has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a control region (1194 bp). Noteworthy, this is only the second published mitogenome for the Iguana iguana species complex, despite the known high intraspecific genetic variation.

3.
Mol Ecol Resour ; 23(4): 818-832, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36695156

RESUMEN

Biomonitoring surveys make use of metabarcoding tools to describe the community composition. These studies match their sequencing results against public genomic databases to identify the species. However, mitochondrial genomic reference data are yet incomplete, only a few genes may be available, or the suitability of existing sequence data is suboptimal for species level resolution. Here, we present a dedicated and cost-effective workflow with no DNA amplification for generating complete fish mitogenomes for the purpose of strengthening fish mitochondrial databases. Two different strategies using long fragment sequencing with Oxford Nanopore technology coupled with mitochondrial DNA enrichment were used. One where the enrichment is achieved by preferential isolation of mitochondria followed by DNA extraction and nuclear DNA depletion ("mitoenrichment"). A second enrichment approach takes advantage of the CRISPR Cas9 targeted scission on previously dephosphorylated DNA ("targeted mitosequencing"). The sequencing results varied between tissue, species, and integrity of the DNA. The mitoenrichment method yielded 0.17%-12.33% of sequences on target and a mean coverage ranging from 74.9 to 805-fold. The targeted mitosequencing experiment from native genomic DNA yielded 1.83%-55% of sequences on target and a 38 to 2123-fold mean coverage. These produced complete mitogenomes of species with homopolymeric regions, tandem repeats, and gene rearrangements. We demonstrate that deep sequencing of long fragments of native fish DNA can be achieved with low computational resources in a cost-effective manner, opening the discovery of mitogenomes of nonmodel or understudied fish taxa to a broad range of laboratories worldwide.


Los estudios de biomonitoreo utilizan herramientas de caracterización genética (metabarcoding) para describir la composición de la comunidad. Estos estudios contrastan las secuencias obtenidas con bases de datos genómicas públicas para así identificar la especie. Sin embargo, las bases de datos mitocondriales de referencia distan mucho de estar completas. En la mayor parte de los casos solo hay unos pocos genes disponibles o los datos existentes no ofrecen resolución hasta el nivel de especie. En este estudio presentamos un método dedicado a generar mitogenomas de peces completos de forma rentable y sin necesidad de amplificación del ADN, con el objeto de ampliar las bases de datos mitocondriales de peces. Para ello se utilizaron dos enfoques diferentes de secuenciación de fragmentos largos utilizando secuenciación Oxford Nanopore y enriquecimiento de ADN mitocondrial. Uno en el que el enriquecimiento se logra mediante el aislamiento preferencial de mitocondrias seguido de extracción del ADN y la eliminación del ADN nuclear ("mitoenriquecimiento"). En el segundo enfoque se aprovecha la capacidad de escisión dirigida por la endonucleasa CRISPR-Cas9 sobre ADN previamente desfosforilado ("mitosecuenciación dirigida"). Los resultados difirieron con el tejido, la especie y la integridad del ADN. El método de mitoenriquecimiento produjo un 0,17%-12,33% de secuencias objetivo y una cobertura media entre 74,9 y 805 secuencias. El experimento de mitosecuenciación dirigida a partir de ADN genómico nativo produjo entre 1,83 y 55% de secuencias objetivo y una cobertura media de 38 a 2123 secuencias. Este estudio permitió completar mitogenomas de diferentes especies que incluyen regiones homopoliméricas, repeticiones en tándem y reorganización de genes. Demostramos que la secuenciación intensiva de fragmentos largos de ADN de peces es posible, se puede lograr con bajos recursos informáticos de una manera económica, superando el método generalizado de secuenciación genómica de baja cobertura y permitiendo el descubrimiento de mitogenomas de taxones de peces no modelo o poco estudiados a una amplia gama de laboratorios en todo el mundo.


Asunto(s)
ADN Mitocondrial , Genoma Mitocondrial , Animales , ADN Mitocondrial/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mitocondrias/genética
4.
Ecology ; 104(2): e3906, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36320096

RESUMEN

Amplicon-sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon-sequencing studies-known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture-struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon-sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.


Asunto(s)
Código de Barras del ADN Taxonómico , Microbiota , Código de Barras del ADN Taxonómico/métodos , ADN/genética , Ecología , Biodiversidad
5.
Proc Biol Sci ; 289(1971): 20212613, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35317670

RESUMEN

All species inevitably leave genetic traces in their environments, and the resulting environmental DNA (eDNA) reflects the species present in a given habitat. It remains unclear whether eDNA signals can provide quantitative metrics of abundance on which human livelihoods or conservation successes depend. Here, we report the results of a large eDNA ocean survey (spanning 86 000 km2 to depths of 500 m) to understand the abundance and distribution of Pacific hake (Merluccius productus), the target of the largest finfish fishery along the west coast of the USA. We sampled eDNA in parallel with a traditional acoustic-trawl survey to assess the value of eDNA surveys at a scale relevant to fisheries management. Despite local differences, the two methods yield comparable information about the broad-scale spatial distribution and abundance. Furthermore, we find depth and spatial patterns of eDNA closely correspond to acoustic-trawl estimates for hake. We demonstrate the power and efficacy of eDNA sampling for estimating abundance and distribution and move the analysis eDNA data beyond sample-to-sample comparisons to management relevant scales. We posit that eDNA methods are capable of providing general quantitative applications that will prove especially valuable in data- or resource-limited contexts.


Asunto(s)
ADN Ambiental , Gadiformes , Animales , Ecosistema , Explotaciones Pesqueras , Humanos , Océanos y Mares
6.
Ecol Appl ; 32(4): e2561, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35128750

RESUMEN

Data from environmental DNA (eDNA) may revolutionize environmental monitoring and management, providing increased detection sensitivity at reduced cost and survey effort. However, eDNA data are rarely used in decision-making contexts, mainly due to uncertainty around (1) data interpretation and (2) whether and how molecular tools dovetail with existing management efforts. We address these challenges by jointly modeling eDNA detection via qPCR and traditional trap data to estimate the density of invasive European green crab (Carcinus maenas), a species for which, historically, baited traps have been used for both detection and control. Our analytical framework simultaneously quantifies uncertainty in both detection methods and provides a robust way of integrating different data streams into management processes. Moreover, the joint model makes clear the marginal information benefit of adding eDNA (or any other) additional data type to an existing monitoring program, offering a path to optimizing sampling efforts for species of management interest. Here, we document green crab eDNA beyond the previously known invasion front and find that the value of eDNA data dramatically increases with low population densities and low traditional sampling effort, as is often the case at leading-edge locations. We also highlight the detection limits of the molecular assay used in this study, as well as scenarios under which eDNA sampling is unlikely to improve existing management efforts.


Asunto(s)
Braquiuros , ADN Ambiental , Animales , Braquiuros/genética , Monitoreo del Ambiente/métodos , Densidad de Población
7.
PLoS One ; 16(9): e0257773, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34570816

RESUMEN

While the number of published marine studies using environmental DNA (eDNA) has increased substantially in recent years, marine fish surveys are still scarce. To examine the potential for eDNA to support marine fisheries monitoring surveys, we optimized an eDNA isolation method, developed a multispecies assay and tested it on eDNA samples collected along the Pacific coast of the United States. Four commercial DNA extraction kits that exploit the capability of the nucleic acids binding a solid phase (two using a silica matrix and two magnetic beads) as well an organic separation method were tested. A species-specific multiplex qPCR assay was developed and tested to simultaneously target Pacific hake (Merluccius productus), Pacific lamprey (Entosphenus tridentatus) and eulachon (Thaleichthys pacificus). The specificity of the assay was tested in silico, in vitro and in natura. Environmental DNA isolation using phenol:chloroform:isoamyl purification with a phase lock was optimized and yielded the highest amount of total and target DNA and was used to extract 46 marine water samples for the detection of the three species of interest. The multiplex qPCR assay used in the quantification process was also optimized to provide convenience and accuracy. Pacific hake was present in 44% of the eDNA samples while the other two species were absent. Here, we present a complete workflow for the simultaneous detection and quantification of multiple marine fish species using eDNA. This workflow supports large-scale at-sea sampling efforts with preservation at ambient temperatures and has demonstrated DNA extraction efficiency and reliability. The multiplex qPCR assay is shown to be sensitive and specific for the purposes of simultaneously monitoring the relative abundance of multiple targeted fish species.


Asunto(s)
ADN Ambiental/aislamiento & purificación , Monitoreo del Ambiente/métodos , Explotaciones Pesqueras , Peces , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , ADN Ambiental/análisis , Peces/genética , Océanos y Mares , Población , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Flujo de Trabajo
8.
PeerJ ; 8: e8869, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292651

RESUMEN

Seagrass beds provide a variety of ecosystem services, both within and outside the bounds of the habitat itself. Here we use environmental DNA (eDNA) amplicons to analyze a broad cross-section of taxa from ecological communities in and immediately surrounding eelgrass (Zostera marina). Sampling seawater along transects extending alongshore outward from eelgrass beds, we demonstrate that eDNA provides meter-scale resolution of communities in the field. We evaluate eDNA abundance indices for 13 major phylogenetic groups of marine and estuarine taxa along these transects, finding highly local changes linked with proximity to Z. marina for a diverse group of dinoflagellates, and for no other group of taxa. Eelgrass habitat is consistently associated with dramatic reductions in dinoflagellate abundance both within the contiguous beds and for at least 15 m outside, relative to nearby sites without eelgrass. These results are consistent with the hypothesis that eelgrass-associated communities have allelopathic effects on dinoflagellates, and that these effects can extend in a halo beyond the bounds of the contiguous beds. Because many dinoflagellates are capable of forming harmful algal blooms (HABs) toxic to humans and other animal species, the apparent salutary effect of eelgrass habitat on neighboring waters has important implications for public health as well as shellfish aquaculture and harvesting.

9.
Ecol Evol ; 8(6): 3119-3130, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29607011

RESUMEN

Although some taxa are increasing in number due to active management and predator control, the overall number of kiwi (Apteryx spp.) is declining. Kiwi are cryptic and rare, meaning current monitoring tools, such as call counts, radio telemetry, and surveys using detection dogs are labor-intensive, yield small datasets, and require substantial resources or provide inaccurate estimates of population sizes. A noninvasive genetic approach could help the conservation effort. We optimized a panel of 23 genetic markers (22 autosomal microsatellite loci and an allosomal marker) to discriminate between all species of kiwi and major lineages within species, while simultaneously determining sex. Markers successfully amplified from both fecal and shed feather DNA samples collected in captivity. We found that DNA extraction was more efficient from shed feathers, but DNA quality was greater with feces, although this was sampling dependent. Our microsatellite panel was able to distinguish between contemporary kiwi populations and lineages and provided PI values in the range of 4.3 × 10-5 to 2.0 × 10-19, which in some cases were sufficient for individualization and mark-recapture studies. As such, we have tested a wide-reaching, noninvasive molecular approach that will improve conservation management by providing better parameter estimates associated with population ecology and demographics such as abundance, growth rates, and genetic diversity.

10.
Pest Manag Sci ; 73(1): 262-266, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27117082

RESUMEN

BACKGROUND: Anticoagulant toxins are used globally to control rats. Resistance of Rattus species to these toxins now occurs in at least 18 countries in Europe, America and Asia. Resistance is often associated with single nucleotide polymorphisms (SNPs) in the Vkorc1 gene. This study gives a first overview of the distribution and frequency of Vkorc1 SNPs in rats in New Zealand. New Zealand is unusual in having no native rodents but three species of introduced Rattus - norvegicus Berk., rattus L. and exulans Peale. RESULTS: Sequence variants occurred in at least one species of rat at all 30 of the sites sampled. Three new SNPs were identified, one in kiore and two in ship rats. No SNPs previously associated with resistance were found in Norway rats or kiore, but seven ship rats were heterozygous and one homozygous for the A74T variant. Its resultant Tyr25Phe mutation has previously been associated with resistance to both first- and second-generation anticoagulants in ship rats in Spain. CONCLUSIONS: This is the first evidence of potential resistance to anticoagulant toxins in rats in New Zealand. Further testing using blood clotting response times in dosed rats is needed to confirm resistance potentially conferred by the Tyr25Phe mutation. Assessment is also needed of the potential of the other non-synonymous variants (Ala14Val, Ala26Val) recorded in this study to confer resistance to anticoagulant toxins. © 2016 Society of Chemical Industry.


Asunto(s)
Anticoagulantes/toxicidad , Resistencia a Medicamentos/genética , Ratas/genética , Rodenticidas/toxicidad , Vitamina K Epóxido Reductasas/genética , Animales , Control de Plagas , Polimorfismo de Nucleótido Simple
11.
Appl Plant Sci ; 3(1)2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25606358

RESUMEN

PREMISE OF THE STUDY: Microsatellite markers were developed for Clianthus puniceus using a shotgun sequencing library and tested for cross amplification in the closely related C. maximus to inform population management of these two endangered species. • METHODS AND RESULTS: We constructed a shotgun sequencing library using a Roche 454 sequencer and searched the resulting data set for putative microsatellite regions. We optimized 12 of these regions to produce polymorphic markers for Clianthus. We tested these markers on four populations of C. maximus and on four C. puniceus individuals of known provenance. Alleles per locus ranged from two to nine, while observed and expected heterozygosities per locus ranged from 0.000 to 1.000 and 0.178 to 0.600, respectively. • CONCLUSIONS: These markers will be valuable for ongoing monitoring of the genetic variation in naturally occurring populations of Clianthus and for the selection of individuals for revegetation projects in the species' former range.

12.
PLoS One ; 9(3): e92043, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637802

RESUMEN

Identifying species occupying an area is essential for many ecological and conservation studies. Faecal DNA is a potentially powerful method for identifying cryptic mammalian species. In New Zealand, 10 species of ungulate (Order: Artiodactyla) have established wild populations and are managed as pests because of their impacts on native ecosystems. However, identifying the ungulate species present within a management area based on pellet morphology is unreliable. We present a method that enables reliable identification of 10 ungulate species (red deer, sika deer, rusa deer, fallow deer, sambar deer, white-tailed deer, Himalayan tahr, Alpine chamois, feral sheep, and feral goat) from swabs of faecal pellets. A high resolution melting (HRM) assay, targeting a fragment of the 12S rRNA gene, was developed. Species-specific primers were designed and combined in a multiplex PCR resulting in fragments of different length and therefore different melting behaviour for each species. The method was developed using tissue from each of the 10 species, and was validated in blind trials. Our protocol enabled species to be determined for 94% of faecal pellet swabs collected during routine monitoring by the New Zealand Department of Conservation. Our HRM method enables high-throughput and cost-effective species identification from low DNA template samples, and could readily be adapted to discriminate other mammalian species from faecal DNA.


Asunto(s)
Artiodáctilos/clasificación , Artiodáctilos/genética , ADN/análisis , ADN/genética , Heces , Desnaturalización de Ácido Nucleico/genética , Animales , Citocromos b/genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Datos de Secuencia Molecular , Nueva Zelanda , Preservación Biológica , ARN Ribosómico/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Especificidad de la Especie
13.
Ecol Evol ; 3(13): 4408-14, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24340182

RESUMEN

The prey range of the invasive Asian paper wasp, Polistes chinensis antennalis, was studied using molecular diagnostics. Nests of paper wasps were collected from urban residential and salt marsh habitats, larvae were removed and dissected, and DNA in the gut of the paper wasp larvae was amplified and sequenced with cytochrome c oxidase subunit I (COI). Seventy percent of samples (211/299) yielded medium-to high-quality sequences, and prey identification was achieved using BLAST searches in BOLD. A total of 42 taxa were identified from 211 samples. Lepidoptera were the majority of prey, with 39 taxa from 91% of samples. Diptera was a relatively small component of prey (three taxa, 19 samples). Conclusive species-level identification of prey was possible for 67% of samples, and genus-level identification, for another 12% of samples. The composition of prey taken was different between the two habitats, with 2.5× more native prey species being taken in salt marsh compared with urban habitats. The results greatly extend the prey range of this invasive species. The technique is a more effective and efficient approach than relying on the collection of "prey balls", or morphological identification of prey, for the study of paper wasps.

14.
Electrophoresis ; 34(24): 3370-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24310859

RESUMEN

An identification assay has been developed that allows accurate detection of 19 of the most common terrestrial mammals present in New Zealand (cow, red deer, goat, dog, horse, hedgehog, cat, tammar wallaby, mouse, weasel, ferret, stoat, sheep, rabbit, Pacific rat, Norway rat, ship rat, pig, and brushtail possum). This technique utilizes species-specific primers that, combined in a multiplex PCR, target small fragments of the mitochondrial cytochrome b gene. Each species, except hedgehog, produces two distinctive species-specific fragments, making the assay self-confirmatory and enabling the identification of multiple species simultaneously in DNA mixtures. The multiplex assay detects as little as 100 copies of mitochondrial DNA, which makes it a very reliable tool for degraded and trace samples. Reliability, accuracy, reproducibility, and sensitivity tests to validate the technique were performed. The technique featured here enabled a prompt response in a predation specific event, but can also be useful for wildlife management and conservation, pest incursions detection, forensic, and industrial purposes in a very simple and cost-effective manner.


Asunto(s)
Mamíferos/clasificación , Mamíferos/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Animales , Biología , Citocromos b/genética , Ecología , Ciencias Forenses , Humanos , Nueva Zelanda , Paleognatos , Conducta Predatoria , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA