Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Struct Mol Biol ; 29(9): 922-931, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36097294

RESUMEN

In addition to its role in chromosome maintenance, the six-membered Smc5/6 complex functions as a restriction factor that binds to and transcriptionally silences viral and other episomal DNA. However, the underlying mechanism is unknown. Here, we show that transcriptional silencing by the human Smc5/6 complex is a three-step process. The first step is entrapment of the episomal DNA by a mechanism dependent on Smc5/6 ATPase activity and a function of its Nse4a subunit for which the Nse4b paralog cannot substitute. The second step results in Smc5/6 recruitment to promyelocytic leukemia nuclear bodies by SLF2 (the human ortholog of Nse6). The third step promotes silencing through a mechanism requiring Nse2 but not its SUMO ligase activity. By contrast, the related cohesin and condensin complexes fail to bind to or silence episomal DNA, indicating a property unique to Smc5/6.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Sumoilación , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Reparación del ADN , Humanos , Ligasas/genética , Ligasas/metabolismo
3.
Hepatology ; 74(1): 55-71, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33368377

RESUMEN

BACKGROUND AND AIMS: GS-9688 (selgantolimod) is a toll-like receptor 8 agonist in clinical development for the treatment of chronic hepatitis B (CHB). Antiviral activity of GS-9688 has previously been evaluated in vitro in HBV-infected hepatocytes and in vivo in the woodchuck model of CHB. Here we evaluated the potential of GS-9688 to boost responses contributing to viral control and to modulate regulatory mediators. APPROACH AND RESULTS: We characterized the effect of GS-9688 on immune cell subsets in vitro in peripheral blood mononuclear cells of healthy controls and patients with CHB. GS-9688 activated dendritic cells and mononuclear phagocytes to produce IL-12 and other immunomodulatory mediators, inducing a comparable cytokine profile in healthy controls and patients with CHB. GS-9688 increased the frequency of activated natural killer (NK) cells, mucosal-associated invariant T cells, CD4+ follicular helper T cells, and, in about 50% of patients, HBV-specific CD8+ T cells expressing interferon-γ. Moreover, in vitro stimulation with GS-9688 induced NK-cell expression of interferon-γ and TNF-α, and promoted hepatocyte lysis. We also assessed whether GS-9688 inhibited immunosuppressive cell subsets that might enhance antiviral efficacy. Stimulation with GS-9688 reduced the frequency of CD4+ regulatory T cells and monocytic myeloid-derived suppressor cells (MDSCs). Residual MDSCs expressed higher levels of negative immune regulators, galectin-9 and programmed death-ligand 1. Conversely, GS-9688 induced an expansion of immunoregulatory TNF-related apoptosis-inducing ligand+ NK cells and degranulation of arginase-I+ polymorphonuclear MDSCs. CONCLUSIONS: GS-9688 induces cytokines in human peripheral blood mononuclear cells that are able to activate antiviral effector function by multiple immune mediators (HBV-specific CD8+ T cells, CD4+ follicular helper T cells, NK cells, and mucosal-associated invariant T cells). Although reducing the frequency of some immunoregulatory subsets, it enhances the immunosuppressive potential of others, highlighting potential biomarkers and immunotherapeutic targets to optimize the antiviral efficacy of GS-9688.


Asunto(s)
Antivirales/farmacología , Hepatitis B Crónica/tratamiento farmacológico , Hexanoles/farmacología , Pirimidinas/farmacología , Receptor Toll-Like 8/antagonistas & inhibidores , Adulto , Anciano , Animales , Antivirales/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Voluntarios Sanos , Células Hep G2 , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Hexanoles/uso terapéutico , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares , Masculino , Marmota , Persona de Mediana Edad , Cultivo Primario de Células , Pirimidinas/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Receptor Toll-Like 8/metabolismo , Adulto Joven
4.
Hepatology ; 73(1): 53-67, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32246499

RESUMEN

BACKGROUND AND AIMS: GS-9688 (selgantolimod) is an oral selective small molecule agonist of toll-like receptor 8 in clinical development for the treatment of chronic hepatitis B. In this study, we evaluated the antiviral efficacy of GS-9688 in woodchucks chronically infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to hepatitis B virus. APPROACH AND RESULTS: WHV-infected woodchucks received eight weekly oral doses of vehicle, 1 mg/kg GS-9688, or 3 mg/kg GS-9688. Vehicle and 1 mg/kg GS-9688 had no antiviral effect, whereas 3 mg/kg GS-9688 induced a >5 log10 reduction in serum viral load and reduced WHV surface antigen (WHsAg) levels to below the limit of detection in half of the treated woodchucks. In these animals, the antiviral response was maintained until the end of the study (>5 months after the end of treatment). GS-9688 treatment reduced intrahepatic WHV RNA and DNA levels by >95% in animals in which the antiviral response was sustained after treatment cessation, and these woodchucks also developed detectable anti-WHsAg antibodies. The antiviral efficacy of weekly oral dosing with 3 mg/kg GS-9688 was confirmed in a second woodchuck study. The antiviral response to GS-9688 did not correlate with systemic GS-9688 or cytokine levels but was associated with transient elevation of liver injury biomarkers and enhanced proliferative response of peripheral blood mononuclear cells to WHV peptides. Transcriptomic analysis of liver biopsies taken prior to treatment suggested that T follicular helper cells and various other immune cell subsets may play a role in the antiviral response to GS-9688. CONCLUSIONS: Finite, short-duration treatment with a clinically relevant dose of GS-9688 is well tolerated and can induce a sustained antiviral response in WHV-infected woodchucks; the identification of a baseline intrahepatic transcriptional signature associated with response to GS-9688 treatment provides insights into the immune mechanisms that mediate this antiviral effect.


Asunto(s)
Antivirales/uso terapéutico , Virus de la Hepatitis B de la Marmota/efectos de los fármacos , Virus de la Hepatitis B de la Marmota/genética , Hepatitis B Crónica/tratamiento farmacológico , Hexanoles/uso terapéutico , Pirimidinas/uso terapéutico , Receptor Toll-Like 8/agonistas , Animales , Antivirales/farmacología , ADN Viral/sangre , Modelos Animales de Enfermedad , Anticuerpos Antihepatitis/sangre , Antígenos de la Hepatitis/sangre , Virus de la Hepatitis B de la Marmota/inmunología , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/inmunología , Hexanoles/farmacología , Humanos , Marmota , Pirimidinas/farmacología , Replicación Viral/efectos de los fármacos
5.
Enzyme Microb Technol ; 131: 109396, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31615679

RESUMEN

Endophytic fungi provide benefits to host plants by producing a diverse class of secondary metabolites (natural products). Arrays of polyketide natural products are synthesized by specific classes of polyketide synthases (PKS I, II and III) in host organisms. In the present study, we attempt to screen and identify type III PKSs in culturable fungal endophytes isolated from the ethno medicinal plants including Arbus precatorius, Bacopa monnieri,Citrus aurantifolia and Datura metel to detect the genetic potential of endophytic fungi in producing bioactive compounds. A total of seventeen endophytic fungal strains belonging to eight genera were identified using fungal morphology and rDNA-ITS phylogenetic analyses. A CODEHOP-PCR based strategy was followed to design degenerate primers for the screening of type III PKS genes from fungal endophytes. We had successfully amplified partial PKS genes from eight endophytes. The amplified PKS sequences showed 60-99% identity to already characterized/putative PKS genes. From the partial sequence of FiPKS from Fusarium incarnatum BMER1, a full-length gene was amplified, cloned and characterized. FiPKScDNA was cloned and expressed in E. coli Lemo21 (DE3) and the purified protein was shown to produce pyrones and resorcinols using acyl-CoA thioesters as substrates. FiPKS showed the highest catalytic efficiency of 7.6 × 104 s-1 M-1 with stearoyl CoA as a starter unit. This study reports the identification and characterization of type III PKS from endophytes of medicinal plants by CODEHOP PCR.


Asunto(s)
Aciltransferasas/genética , Endófitos/enzimología , Hongos/enzimología , Plantas Medicinales/microbiología , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Expresión Génica , Cinética , Técnicas Microbiológicas , Filogenia , Pironas/metabolismo , Resorcinoles/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia
6.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167910

RESUMEN

The host structural maintenance of chromosomes 5/6 complex (Smc5/6) suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the cellular DNA damage-binding protein 1 (DDB1)-containing E3 ubiquitin ligase to target Smc5/6 for degradation. However, the details of how HBx modulates the interaction between DDB1 and Smc5/6 remain to be determined. In this study, we performed biophysical analyses of recombinant HBx and functional analysis of HBx mutants in HBV-infected primary human hepatocytes (PHH) to identify key regions and residues that are required for HBx function. We determined that recombinant HBx is soluble and exhibits stoichiometric zinc binding when expressed in the presence of DDB1. Mass spectrometry-based hydrogen-deuterium exchange and cysteine-specific chemical footprinting of the HBx:DDB1 complex identified several HBx cysteine residues (located between amino acids 61 and 137) that are likely involved in zinc binding. These cysteine residues did not form disulfide bonds in HBx expressed in human cells. In line with the biophysical data, functional analysis demonstrated that HBx amino acids 45 to 140 are required for Smc6 degradation and HBV transcription in PHH. Furthermore, site-directed mutagenesis determined that C61, C69, C137, and H139 are necessary for HBx function, although they are likely not essential for DDB1 binding. This CCCH motif is highly conserved in HBV as well as in the X proteins from various mammalian hepadnaviruses. Collectively, our data indicate that the essential HBx cysteine and histidine residues form a zinc-binding motif that is required for HBx function.IMPORTANCE The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses HBV transcription. HBV counters this restriction by expressing HBV X protein (HBx), which redirects a host ubiquitin ligase to target Smc5/6 for degradation. Despite this recent advance in understanding HBx function, the key regions and residues of HBx required for Smc5/6 degradation have not been determined. In the present study, we performed biochemical, biophysical, and cell-based analyses of HBx. By doing so, we mapped the minimal functional region of HBx and identified a highly conserved CCCH motif in HBx that is likely responsible for coordinating zinc and is essential for HBx function. We also developed a method to produce soluble recombinant HBx protein that likely adopts a physiologically relevant conformation. Collectively, this study provides new insights into the HBx structure-function relationship and suggests a new approach for structural studies of this enigmatic viral regulatory protein.


Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B/metabolismo , Hepatitis B/virología , Transactivadores/metabolismo , Zinc/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Proteínas Recombinantes de Fusión , Transactivadores/química , Proteínas Reguladoras y Accesorias Virales
7.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167911

RESUMEN

The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the host DNA damage-binding protein 1 (DDB1) E3 ubiquitin ligase to target Smc5/6 for degradation. HBx is an attractive therapeutic target for the treatment of chronic hepatitis B (CHB), but it is challenging to study this important viral protein in the context of natural infection due to the lack of a highly specific and sensitive HBx antibody. In this study, we developed a novel monoclonal antibody that enables detection of HBx protein in HBV-infected primary human hepatocytes (PHH) by Western blotting and immunofluorescence. Confocal imaging studies with this antibody demonstrated that HBx is predominantly located in the nucleus of HBV-infected PHH, where it exhibits a diffuse staining pattern. In contrast, a DDB1-binding-deficient HBx mutant was detected in both the cytoplasm and nucleus, suggesting that the DDB1 interaction plays an important role in the nuclear localization of HBx. Our study also revealed that HBx is expressed early after infection and has a short half-life (∼3 h) in HBV-infected PHH. In addition, we found that treatment with small interfering RNAs (siRNAs) that target DDB1 or HBx mRNA decreased HBx protein levels and led to the reappearance of Smc6 in the nuclei of HBV-infected PHH. Collectively, these studies provide the first spatiotemporal analysis of HBx in a natural infection system and also suggest that HBV transcriptional silencing by Smc5/6 can be restored by therapeutic targeting of HBx.IMPORTANCE Hepatitis B virus X protein (HBx) is a promising drug target since it promotes the degradation of the host structural maintenance of chromosomes 5/6 complex (Smc5/6) that inhibits HBV transcription. To date, it has not been possible to study HBx in physiologically relevant cell culture systems due to the lack of a highly specific and selective HBx antibody. In this study, we developed a novel monoclonal HBx antibody and performed a spatiotemporal analysis of HBx in a natural infection system. This revealed that HBx localizes to the nucleus of infected cells, is expressed shortly after infection, and has a short half-life. In addition, we demonstrated that inhibiting HBx expression or function promotes the reappearance of Smc6 in the nucleus of infected cells. These data provide new insights into HBx and underscore its potential as a novel target for the treatment of chronic HBV infection.


Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B/virología , Hepatocitos/virología , Transactivadores/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Proteínas de Unión al ADN/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Expresión Génica , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica , Transporte de Proteínas , Transactivadores/química , Transactivadores/genética , Transactivadores/inmunología , Proteínas Reguladoras y Accesorias Virales
8.
Enzyme Microb Technol ; 115: 16-22, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29859598

RESUMEN

Two putative type III polyketide synthase genes (PKS) were identified from Sordariomycetes fungi. These two type III PKS genes from Sordaria macrospora (SmPKS) and Chaetomium thermophilum (CtPKS), shared 59.8% sequence identity. Both, full-length and truncated versions of type III PKSs were successfully cloned and overexpressed in a bacterial host, Escherichia Coli BL21 (DE3) using a N-terminus hexa-histidine tag. The full-length and the truncated construct of PKSs showed similar activity profiles, suggesting that additional amino acid residues at the C-terminal of both SmPKS and CtPKS may not be involved in catalytic functions. We demonstrate that these two recombinant polyketide synthases could efficiently synthesize tri- and tetraketide pyrones, resorcinols and resorcylic acids using various acyl-CoAs (C4-C20) as starter units. The truncated S. macrospora polyketide synthases (TrSmPKS) showed a maximum of 7.0 × 104 s-1 M-1 catalytic efficiency towards stearoyl-CoA.Whereas, truncated C. thermophilum polyketide synthases (TrCtPKS) preferred the long-chain acyl-CoA starter arachidoyl-CoA, to produce pentaketide and hexaketide resorcinols with a high catalytic efficiency of 6.2 × 104 s-1 M-1. Homology model and substrate docking analyses suggest a shorter distance between sulfur of catalytic Cys152 and thioester carbonyl group of arachidoyl-CoA as well as stronger imidazolium-thiolate ion pair distance in TrCtPKS between catalytic Cys152-His309 compared to TrSmPKS- arachidoyl CoA complex. Enhanced binding interactions of CtPKS residues forming intermolecular contacts at the active site could be attributed to its high specificity towards arachidoyl-CoA. This study reports the functional characterization of two fungal type III polyketide synthases, SmPKS and CtPKS with high catalytic efficiency from S. macrospora and C. thermophilum respectively. Furthermore, the results suggested that the both SmPKS and CtPKS could be attractive targets for protein engineering to discern the unique substrate specificity and catalytic efficiency.


Asunto(s)
Acilcoenzima A/metabolismo , Chaetomium/enzimología , Sintasas Poliquetidas/metabolismo , Pironas/metabolismo , Sordariales/enzimología , Catálisis , Dominio Catalítico , Chaetomium/genética , Chaetomium/crecimiento & desarrollo , Clonación Molecular , Cinética , Modelos Moleculares , Sintasas Poliquetidas/genética , Sordariales/genética , Sordariales/crecimiento & desarrollo , Especificidad por Sustrato
9.
Viruses ; 9(4)2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368357

RESUMEN

Hepatitis B X protein (HBx) plays an essential role in the hepatitis B virus (HBV) replication cycle, but the function of HBx has been elusive until recently. It was recently shown that transcription from the HBV genome (covalently-closed circular DNA, cccDNA) is inhibited by the structural maintenance of chromosome 5/6 complex (Smc5/6), and that a key function of HBx is to redirect the DNA-damage binding protein 1 (DDB1) E3 ubiquitin ligase to target this complex for degradation. By doing so, HBx alleviates transcriptional repression by Smc5/6 and stimulates HBV gene expression. In this review, we discuss in detail how the interplay between HBx and Smc5/6 was identified and characterized. We also discuss what is known regarding the repression of cccDNA transcription by Smc5/6, the timing of HBx expression, and the potential role of HBx in promoting hepatocellular carcinoma (HCC).


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Interacciones Huésped-Patógeno , Transactivadores/metabolismo , Replicación Viral , Proteínas Cromosómicas no Histona , Humanos , Proteínas Reguladoras y Accesorias Virales
10.
PLoS One ; 12(1): e0169648, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28095508

RESUMEN

The structural maintenance of chromosome 5/6 complex (Smc5/6) is a restriction factor that represses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing HBV X protein (HBx), which targets Smc5/6 for degradation. However, the mechanism by which Smc5/6 suppresses HBV transcription and how HBx is initially expressed is not known. In this study we characterized viral kinetics and the host response during HBV infection of primary human hepatocytes (PHH) to address these unresolved questions. We determined that Smc5/6 localizes with Nuclear Domain 10 (ND10) in PHH. Co-localization has functional implications since depletion of ND10 structural components alters the nuclear distribution of Smc6 and induces HBV gene expression in the absence of HBx. We also found that HBV infection and replication does not induce a prominent global host transcriptional response in PHH, either shortly after infection when Smc5/6 is present, or at later times post-infection when Smc5/6 has been degraded. Notably, HBV and an HBx-negative virus establish high level infection in PHH without inducing expression of interferon-stimulated genes or production of interferons or other cytokines. Our study also revealed that Smc5/6 is degraded in the majority of infected PHH by the time cccDNA transcription could be detected and that HBx RNA is present in cell culture-derived virus preparations as well as HBV patient plasma. Collectively, these data indicate that Smc5/6 is an intrinsic antiviral restriction factor that suppresses HBV transcription when localized to ND10 without inducing a detectable innate immune response. Our data also suggest that HBx protein may be initially expressed by delivery of extracellular HBx RNA into HBV-infected cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Virus de la Hepatitis B/inmunología , Hepatitis B/inmunología , Inmunidad Innata/inmunología , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas Cromosómicas no Histona , Citocinas/genética , Citocinas/metabolismo , Hepatitis B/metabolismo , Hepatitis B/virología , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales , Replicación Viral
11.
PLoS One ; 8(2): e57489, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451236

RESUMEN

High-grade gliomas, such as glioblastomas (GBMs), are very aggressive, invasive brain tumors with low patient survival rates. The recent identification of distinct glioma tumor subtypes offers the potential for understanding disease pathogenesis, responses to treatment and identification of molecular targets for personalized cancer therapies. However, the key alterations that drive tumorigenesis within each subtype are still poorly understood. Although aberrant NF-κB activity has been implicated in glioma, the roles of specific members of this protein family in tumorigenesis and pathogenesis have not been elucidated. In this study, we show that the NF-κB protein RelB is expressed in a particularly aggressive mesenchymal subtype of glioma, and loss of RelB significantly attenuated glioma cell survival, motility and invasion. We find that RelB promotes the expression of mesenchymal genes including YKL-40, a marker of the MES glioma subtype. Additionally, RelB regulates expression of Olig2, a regulator of cancer stem cell proliferation and a candidate marker for the cell of origin in glioma. Furthermore, loss of RelB in glioma cells significantly diminished tumor growth in orthotopic mouse xenografts. The relevance of our studies for human disease was confirmed by analysis of a human GBM genome database, which revealed that high RelB expression strongly correlates with rapid tumor progression and poor patient survival rates. Thus, our findings demonstrate that RelB is an oncogenic driver of mesenchymal glioma tumor growth and invasion, highlighting the therapeutic potential of inhibiting the noncanonical NF-κB (RelB-mediated) pathway to treat these deadly tumors.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Glioma/genética , Mesodermo/patología , FN-kappa B/genética , Factor de Transcripción ReIB/genética , Adipoquinas/genética , Adipoquinas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Proteína 1 Similar a Quitinasa-3 , Glioma/metabolismo , Glioma/patología , Humanos , Lectinas/genética , Lectinas/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Desnudos , FN-kappa B/metabolismo , Invasividad Neoplásica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción ReIB/metabolismo
12.
Cell Calcium ; 53(3): 170-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23246155

RESUMEN

The S100s are a large group of Ca(2+) sensors found exclusively in vertebrates. Transcriptomic and genomic data from the major radiations of mammals were used to derive the evolution of the mammalian S100s genes. In human and mouse, S100s and S100 fused-type proteins are in a separate clade from other Ca(2+) sensor proteins, indicating that an ancient bifurcation between these two gene lineages has occurred. Furthermore, the five genomic loci containing S100 genes have remained largely intact during the past 165 million years since the shared ancestor of egg-laying and placental mammals. Nonetheless, interesting births and deaths of S100 genes have occurred during mammalian evolution. The S100A7 loci exhibited the most plasticity and phylogenetic analyses clarified relationships between the S100A7 proteins encoded in the various mammalian genomes. Phylogenetic analyses also identified four conserved subgroups of S100s that predate the rise of warm-blooded vertebrates: A2/A3/A4/A5/A6, A1/A10/A11/B/P/Z, A13/A14/A16, and A7s/A8/A9/A12/G. The similarity between genomic location and phylogenetic clades suggest that these subfamilies arose by a series of tandem gene duplication events. Examination of annotated S100s in lower vertebrates suggests that the ancestral S100 was a member of the A1/A10/A11/B/P/Z subgroup and arose near the emergence of vertebrates approximately 500 million years ago.


Asunto(s)
Evolución Molecular , Filogenia , Proteínas S100/química , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Proteínas S100/genética , Alineación de Secuencia , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...