Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 19(1): e2300350, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38135869

RESUMEN

A novel approach for in situ transesterification, extraction, separation, and purification of fatty acid ethyl esters (FAEE) for biodiesel and docosahexaenoic acid (DHA) from Thraustochytrid biomass has been developed. The downstream processing of Thraustochytrids oil necessitates optimization, considering the higher content of polyunsaturated fatty acids (PUFA). While two-step methods are commonly employed for extracting and transesterifying oil from oleaginous microbes, this may result in oxidation/epoxidation of omega-3 oil due to prolonged exposure to heat and oxygen. To address this issue, a rapid single-step method was devised for in situ transesterification of Thraustochytrid oil. Through further process optimization, a 50% reduction in solvent requirement was achieved without significantly impacting fatty acid recovery or composition. Scale-up studies in a 4 L reactor demonstrated complete FAEE recovery (99.98% of total oil) from biomass, concurrently enhancing DHA yield from 16% to nearly 22%. The decolorization of FAEE oil with fuller's earth effectively removed impurities such as pigments, secondary metabolites, and waxes, resulting in a clear, shiny appearance. High-performance liquid chromatography (HPLC) analysis indicated that the eluted DHA was over 94.5% pure, as corroborated by GC-FID analysis.


Asunto(s)
Ácidos Docosahexaenoicos , Ácidos Grasos Omega-3 , Ácidos Docosahexaenoicos/química , Biocombustibles , Biomasa , Ácidos Grasos/química , Ácidos Grasos Omega-3/química , Ésteres/metabolismo
2.
Appl Microbiol Biotechnol ; 107(19): 6135-6149, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37555947

RESUMEN

The study focuses on the simultaneous improvement of biomass, lipid, and docosahexaenoic acid (DHA) productivities in a single reactor using modulator control strategies. The efficacy of three different biochemical modulators, sesamol (Ses), 6-benzylaminopurine (6-BAP), and ethylenediaminetetraacetic acid (EDTA), as potential stimulants in augmenting the biomass, lipid, and DHA production of Schizochytrium sp. MTCC 5890 was elucidated. After 48 h of cultivation, among tested modulators, the individual supplementation of 6-BAP and Ses showed improvement in biomass, lipid, and DHA accumulation by 28.2%, 56.1%, and 87.2% and 21.7%, 47.9%, and 91%, respectively, over the non-supplemented group. In addition, the cooperative effect of selected concentrations, i.e., 10 mgL-1 6-BAP and 200 mgL-1 Ses, further increased the productivities of biomass of 13.5 gL-1d-1 ± 0.66, lipid of 7.4 gL-1d-1 ± 0.69, and DHA of 3.2 gL-1d-1 ± 1.09 representing 8%, 39%, and 69% increase over the individual addition of 6-BAP or Ses, respectively, in batch culture. Supplementation with 6-BAP + Ses at 12 h of time point eventually increased the lipid yield to 15.6 ± 0.42 gL-1 from 7.88 ± 0.31 gL-1 (control) and DHA yield to 6.4 ± 0.11 gL-1 from 2.23 ± 0.09 gL-1 (control), respectively. Furthermore, the process was optimized in continuous culture supplemented with 6-BAP + Ses for enhanced productivities. Continuous culture resulted in maximum biomass (2.04 ± 1.12 gL-1 day-1), lipid (1.0 ± 0.73 gL-1 day-1), and DHA (0.386 ± 0.22 gL-1 day-1) productivities, which were higher as compared with the batch and fed-batch processes by 26 ± 1.21%, 22 ± 1.01%, and 21 ± 0.98% and 24 ± 0.45%, 16 ± 0.38%, and 14 ± 0.12%, respectively. This work represents the potential application of the combined effect of modulators for the simultaneous enhancement of biomass production and lipid and DHA productivities. KEY POINTS: • The cumulative study of 6-BAP and sesamol proved to be more efficient in the simultaneous production of biomass, lipid, and DHA in a single reactor. • Addition of a combination of 6-BAP + Ses remarkably increased the biomass, lipid, and DHA productivities in tandem in continuous culture.


Asunto(s)
Estramenopilos , Fermentación , Ácidos Docosahexaenoicos , Benzodioxoles , Biomasa
3.
Environ Sci Pollut Res Int ; 30(24): 64994-65010, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37074603

RESUMEN

With ever-increasing plastic waste, a robust and sustainable methodology to valorize the waste and tweak, the composition of the value added product is the need of the hour. The present study describes the effect of different heterogeneous catalyst systems on the yield, composition and nature of the pyrolysis oil produced from various waste polyolefins like high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and polypropylene (PP). The waste polyolefins were subjected to thermal as well as catalytic pyrolysis. Liquid, gas, and solid products were obtained during the pyrolysis. Various catalysts such as activated alumina (AAL), ZSM-5, FCC catalyst, and halloysite clay (HNT) were used. Usage of catalysts has reduced the temperature of the pyrolysis reaction from 470 to 450 °C with better liquid product yield. PP waste generated higher liquid yield compared to LLDPE and HDPE waste. The highest liquid yield of 70.0% was achieved with PP waste using AAL catalyst at 450 °C. The sulfur and chloride content was found to be < 10 and < 20 ppm respectively in all the pyrolysis liquid. Pyrolysis liquid products were analyzed using gas chromatography (GC), nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray fluorescence (XRF) spectroscopy, and gas chromatography coupled with mass spectrophotometry (GC-MS). The obtained liquid products consist of paraffin, naphthene, olefin and aromatic components. Catalyst regeneration experiments with AAL showed that the product distribution profile remains the same up to three cycles of regeneration.


Asunto(s)
Plásticos , Polietileno , Polietileno/química , Pirólisis , Polienos , Polipropilenos/química , Arcilla , Catálisis
4.
Biotechnol Bioeng ; 119(8): 2167-2181, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35470437

RESUMEN

Metabolite production by filamentous fungi hampered because of high viscosity generated during growth. Low viscosity fermentation by mold is one of the preferred ways of large scale enzymes production. Cellulolytic enzymes play a key role during the process of lignocellulosic biomass conversion. In this study, a mutant RC-23-1 was isolated through mutagenesis (diethyl sulfate followed by UV) of Trichoderma reesei RUT-C30. RCRC-23-1 not only gave higher cellulase production but also generated lower viscosity during enzyme production. Viscosity of mutant growth was more than three times lower than parent strain. RC-23-1 shows unique, yeast-like colony morphology on solid media and small pellet-like growth in liquid media. This mutant did not spread like mold on solid media. This mutant produces cellulases constitutively when grown in sugars. Using only glucose, the cellulase production was 4.1 FPU/ml. Among polysaccharides (avicel, xylan, and pectin), avicel gave maximum of 6.2 FPU/ml and pretreated biomass (rice straw, wheat straw and sugarcane bagasse) produced 5.1-5.8 FPU/ml. At 7 L scale reactor, fed-batch process was designed for cellulase production using different carbon and nitrogen sources. Maximum yield of cellulases was 182 FPU/g of lactose consumed was observed in fed-batch process. The produced enzyme used for hydrolysis of acid pretreated rice straw (20% solid loading) and maximum of 60% glucan conversion was observed. RC-23-1 mutant is good candidate for large scale cellulase production and could be a model strain to study mold to yeast-like transformation.


Asunto(s)
Celulasa , Celulasas , Saccharum , Trichoderma , Celulasa/metabolismo , Celulasas/metabolismo , Celulosa/metabolismo , Hidrólisis , Hypocreales , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...