Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(9): 1279-1289, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37696947

RESUMEN

Embryos across metazoan lineages can enter reversible states of developmental pausing, or diapause, in response to adverse environmental conditions. The molecular mechanisms that underlie this remarkable dormant state remain largely unknown. Here we show that N6-methyladenosine (m6A) RNA methylation by Mettl3 is required for developmental pausing in mouse blastocysts and embryonic stem (ES) cells. Mettl3 enforces transcriptional dormancy through two interconnected mechanisms: (1) it promotes global mRNA destabilization and (2) it suppresses global nascent transcription by destabilizing the mRNA of the transcriptional amplifier and oncogene N-Myc, which we identify as a crucial anti-pausing factor. Knockdown of N-Myc rescues pausing in Mettl3-/- ES cells, and forced demethylation and stabilization of Mycn mRNA in paused wild-type ES cells largely recapitulates the transcriptional defects of Mettl3-/- ES cells. These findings uncover Mettl3 as a key orchestrator of the crosstalk between transcriptomic and epitranscriptomic regulation during developmental pausing, with implications for dormancy in adult stem cells and cancer.


Asunto(s)
Células Madre Adultas , Animales , Ratones , Blastocisto , Células Madre Embrionarias , Metilación , ARN Mensajero/genética
2.
bioRxiv ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36778216

RESUMEN

Embryos across metazoan lineages can enter reversible states of developmental pausing, or diapause, in response to adverse environmental conditions. The molecular mechanisms that underlie this remarkable dormant state remain largely unknown. Here we show that m 6 A RNA methylation by Mettl3 is required for developmental pausing in mice by maintaining dormancy of paused embryonic stem cells and blastocysts. Mettl3 enforces transcriptional dormancy via two interconnected mechanisms: i) it promotes global mRNA destabilization and ii) suppresses global nascent transcription by specifically destabilizing the mRNA of the transcriptional amplifier and oncogene N-Myc, which we identify as a critical anti-pausing factor. Our findings reveal Mettl3 as a key orchestrator of the crosstalk between transcriptomic and epitranscriptomic regulation during pausing, with implications for dormancy in stem cells and cancer.

3.
Cell Rep ; 42(1): 111978, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640358

RESUMEN

Hypertranscription supports biosynthetically demanding cellular states through global transcriptome upregulation. Despite its potential widespread relevance, documented examples of hypertranscription remain few and limited to early development. Here, we demonstrate that absolute scaling of single-cell RNA-sequencing data enables the estimation of total transcript abundances per cell. We validate absolute scaling in known cases of developmental hypertranscription and apply it to adult cell types, revealing a remarkable dynamic range in transcriptional output. In adult organs, hypertranscription marks activated stem/progenitor cells with multilineage potential and is redeployed in conditions of tissue injury, where it precedes bursts of proliferation during regeneration. Our analyses identify a common set of molecular pathways associated with both adult and embryonic hypertranscription, including chromatin remodeling, DNA repair, ribosome biogenesis, and translation. These shared features across diverse cell contexts support hypertranscription as a general and dynamic cellular program that is pervasively employed during development, organ maintenance, and regeneration.


Asunto(s)
Células Madre , Transcriptoma , Transcriptoma/genética , Células Madre/metabolismo , Activación Transcripcional , Ensamble y Desensamble de Cromatina , Análisis de la Célula Individual
4.
Nat Rev Mol Cell Biol ; 24(1): 6-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36028557

RESUMEN

Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.


Asunto(s)
Cromatina , Células Madre Embrionarias , Animales , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Complejo Represivo Polycomb 2/genética , Código de Histonas , Mamíferos/genética , Mamíferos/metabolismo
5.
STAR Protoc ; 2(3): 100726, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34409306

RESUMEN

LINE1 is the most active and abundant family of retrotransposons; it is implicated in a number of pathologies, as well as in early embryo development. We present a protocol to specifically knockdown LINE1 in mouse embryonic stem cells and embryos, including details for the nucleofection and zygote microinjection of LINE antisense oligos, followed by RNA FISH validation. This protocol can be used in development, as well as other cell types where LINE1 is believed to be expressed. For complete information on the use and execution of this protocol, please refer to Percharde et al. (2018).


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Elementos de Nucleótido Esparcido Largo/genética , Microinyecciones/métodos , Animales , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , ARN/metabolismo , ARN Nuclear/metabolismo , Cigoto/metabolismo
6.
Nat Commun ; 12(1): 4859, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381042

RESUMEN

Stem and progenitor cells undergo a global elevation of nascent transcription, or hypertranscription, during key developmental transitions involving rapid cell proliferation. The chromatin remodeler Chd1 mediates hypertranscription in pluripotent cells but its mechanism of action remains poorly understood. Here we report a novel role for Chd1 in protecting genome integrity at promoter regions by preventing DNA double-stranded break (DSB) accumulation in ES cells. Chd1 interacts with several DNA repair factors including Atm, Parp1, Kap1 and Topoisomerase 2ß and its absence leads to an accumulation of DSBs at Chd1-bound Pol II-transcribed genes and rDNA. Genes prone to DNA breaks in Chd1 KO ES cells are longer genes with GC-rich promoters, a more labile nucleosomal structure and roles in chromatin regulation, transcription and signaling. These results reveal a vulnerability of hypertranscribing stem cells to accumulation of endogenous DNA breaks, with important implications for developmental and cancer biology.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética , Animales , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Transducción de Señal , Sitio de Iniciación de la Transcripción
7.
Nat Commun ; 12(1): 1865, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767158

RESUMEN

Pluripotent cells of the mammalian embryo undergo extensive chromatin rewiring to prepare for lineage commitment after implantation. Repressive H3K27me3, deposited by Polycomb Repressive Complex 2 (PRC2), is reallocated from large blankets in pre-implantation embryos to mark promoters of developmental genes. The regulation of this global redistribution of H3K27me3 is poorly understood. Here we report a post-translational mechanism that destabilizes PRC2 to constrict H3K27me3 during lineage commitment. Using an auxin-inducible degron system, we show that the deubiquitinase Usp9x is required for mouse embryonic stem (ES) cell self-renewal. Usp9x-high ES cells have high PRC2 levels and bear a chromatin and transcriptional signature of the pre-implantation embryo, whereas Usp9x-low ES cells resemble the post-implantation, gastrulating epiblast. We show that Usp9x interacts with, deubiquitinates and stabilizes PRC2. Deletion of Usp9x in post-implantation embryos results in the derepression of genes that normally gain H3K27me3 after gastrulation, followed by the appearance of morphological abnormalities at E9.5, pointing to a recurrent link between Usp9x and PRC2 during development. Usp9x is a marker of "stemness" and is mutated in various neurological disorders and cancers. Our results unveil a Usp9x-PRC2 regulatory axis that is critical at peri-implantation and may be redeployed in other stem cell fate transitions and disease states.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Complejo Represivo Polycomb 2/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Femenino , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño/genética , Ubiquitina Tiolesterasa/genética
8.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417860

RESUMEN

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Diapausa , Resistencia a Antineoplásicos , Animales , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Células Clonales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Heterogeneidad Genética/efectos de los fármacos , Humanos , Irinotecán/farmacología , Irinotecán/uso terapéutico , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell Res ; 31(6): 613-630, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33514913

RESUMEN

Organization of the genome into euchromatin and heterochromatin appears to be evolutionarily conserved and relatively stable during lineage differentiation. In an effort to unravel the basic principle underlying genome folding, here we focus on the genome itself and report a fundamental role for L1 (LINE1 or LINE-1) and B1/Alu retrotransposons, the most abundant subclasses of repetitive sequences, in chromatin compartmentalization. We find that homotypic clustering of L1 and B1/Alu demarcates the genome into grossly exclusive domains, and characterizes and predicts Hi-C compartments. Spatial segregation of L1-rich sequences in the nuclear and nucleolar peripheries and B1/Alu-rich sequences in the nuclear interior is conserved in mouse and human cells and occurs dynamically during the cell cycle. In addition, de novo establishment of L1 and B1 nuclear segregation is coincident with the formation of higher-order chromatin structures during early embryogenesis and appears to be critically regulated by L1 and B1 transcripts. Importantly, depletion of L1 transcripts in embryonic stem cells drastically weakens homotypic repeat contacts and compartmental strength, and disrupts the nuclear segregation of L1- or B1-rich chromosomal sequences at genome-wide and individual sites. Mechanistically, nuclear co-localization and liquid droplet formation of L1 repeat DNA and RNA with heterochromatin protein HP1α suggest a phase-separation mechanism by which L1 promotes heterochromatin compartmentalization. Taken together, we propose a genetically encoded model in which L1 and B1/Alu repeats blueprint chromatin macrostructure. Our model explains the robustness of genome folding into a common conserved core, on which dynamic gene regulation is overlaid across cells.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Análisis por Conglomerados , Elementos de Nucleótido Esparcido Largo/genética , Ratones , ARN , Secuencias Repetitivas de Ácidos Nucleicos/genética , Retroelementos
10.
Mol Hum Reprod ; 26(11): 866-878, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33010164

RESUMEN

The preimplantation stage of development is exquisitely sensitive to environmental stresses, and changes occurring during this developmental phase may have long-term health effects. Animal studies indicate that IVF offspring display metabolic alterations, including hypertension, glucose intolerance and cardiac hypertrophy, often in a sexual dimorphic fashion. The detailed nature of epigenetic changes following in-vitro culture is, however, unknown. This study was performed to evaluate the epigenetic (using whole-genome bisulfite sequencing (WGBS) and assay for transposase-accessible chromatin using sequencing (ATAC-seq)) and transcriptomic changes (using RNA-seq) occurring in the inner cell mass (ICM) of male or female mouse embryos generated in vivo or by IVF. We found that the ICM of IVF embryos, compared to the in-vivo ICM, differed in 3% of differentially methylated regions (DMRs), of which 0.1% were located on CpG islands. ATAC-seq revealed that 293 regions were more accessible and 101 were less accessible in IVF embryos, while RNA-seq revealed that 21 genes were differentially regulated in IVF embryos. Functional enrichment analysis revealed that stress signalling (STAT and NF-kB signalling), developmental processes and cardiac hypertrophy signalling showed consistent changes in WGBS and ATAC-seq platforms. In contrast, male and female embryos showed minimal changes. Male ICM had an increased number of significantly hyper-methylated DMRs, while only 27 regions showed different chromatin accessibility and only one gene was differentially expressed. In summary, this study provides the first comprehensive analysis of DNA methylation, chromatin accessibility and RNA expression changes induced by IVF in male and female ICMs. This dataset can be of value to all researchers interested in the developmental origin of health and disease (DOHaD) hypothesis and might lead to a better understanding of how early embryonic manipulation may affect adult health.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Epigénesis Genética/fisiología , Caracteres Sexuales , Animales , Células Cultivadas , Cromatina/metabolismo , Islas de CpG , Metilación de ADN , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Femenino , Fertilización/fisiología , Fertilización In Vitro/métodos , Fertilización In Vitro/veterinaria , Perfilación de la Expresión Génica , Masculino , Ratones , Embarazo , Transcriptoma
11.
Cell Rep ; 30(10): 3296-3311.e5, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160538

RESUMEN

Repetitive elements are abundantly distributed in mammalian genomes. Here, we reveal a striking association between repeat subtypes and gene function. SINE, L1, and low-complexity repeats demarcate distinct functional categories of genes and may dictate the time and level of gene expression by providing binding sites for different regulatory proteins. Importantly, imaging and sequencing analysis show that L1 repeats sequester a large set of genes with specialized functions in nucleolus- and lamina-associated inactive domains that are depleted of SINE repeats. In addition, L1 transcripts bind extensively to its DNA in embryonic stem cells (ESCs). Depletion of L1 RNA in ESCs leads to relocation of L1-enriched chromosomal segments from inactive domains to the nuclear interior and de-repression of L1-associated genes. These results demonstrate a role of L1 DNA and RNA in gene silencing and suggest a general theme of genomic repeats in orchestrating the function, regulation, and expression of their host genes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Secuencias Repetitivas de Ácidos Nucleicos/genética , Animales , Secuencia de Bases , Nucléolo Celular/genética , Cromatina/metabolismo , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Ontología de Genes , Células HEK293 , Humanos , Células K562 , Ratones , Modelos Genéticos , Lámina Nuclear/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Nucleolina
12.
Bioessays ; 42(4): e1900232, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32053231

RESUMEN

Transposable elements (TEs) are sequences currently or historically mobile, and are present across all eukaryotic genomes. A growing interest in understanding the regulation and function of TEs has revealed seemingly dichotomous roles for these elements in evolution, development, and disease. On the one hand, many gene regulatory networks owe their organization to the spread of cis-elements and DNA binding sites through TE mobilization during evolution. On the other hand, the uncontrolled activity of transposons can generate mutations and contribute to disease, including cancer, while their increased expression may also trigger immune pathways that result in inflammation or senescence. Interestingly, TEs have recently been found to have novel essential functions during mammalian development. Here, the function and regulation of TEs are discussed, with a focus on LINE1 in mammals. It is proposed that LINE1 is a beneficial endogenous dual regulator of gene expression and genomic diversity during mammalian development, and that both of these functions may be detrimental if deregulated in disease contexts.


Asunto(s)
Cromatina/genética , Elementos Transponibles de ADN/genética , Expresión Génica , Redes Reguladoras de Genes , Variación Genética , Mamíferos/crecimiento & desarrollo , Mamíferos/genética , Animales , Sitios de Unión , Desoxirribonucleasa I/genética , Elementos de Facilitación Genéticos , Evolución Molecular , Humanos
14.
Nature ; 573(7773): 271-275, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31485074

RESUMEN

Development is often assumed to be hardwired in the genome, but several lines of evidence indicate that it is susceptible to environmental modulation with potential long-term consequences, including in mammals1,2. The embryonic germline is of particular interest because of the potential for intergenerational epigenetic effects. The mammalian germline undergoes extensive DNA demethylation3-7 that occurs in large part by passive dilution of methylation over successive cell divisions, accompanied by active DNA demethylation by TET enzymes3,8-10. TET activity has been shown to be modulated by nutrients and metabolites, such as vitamin C11-15. Here we show that maternal vitamin C is required for proper DNA demethylation and the development of female fetal germ cells in a mouse model. Maternal vitamin C deficiency does not affect overall embryonic development but leads to reduced numbers of germ cells, delayed meiosis and reduced fecundity in adult offspring. The transcriptome of germ cells from vitamin-C-deficient embryos is remarkably similar to that of embryos carrying a null mutation in Tet1. Vitamin C deficiency leads to an aberrant DNA methylation profile that includes incomplete demethylation of key regulators of meiosis and transposable elements. These findings reveal that deficiency in vitamin C during gestation partially recapitulates loss of TET1, and provide a potential intergenerational mechanism for adjusting fecundity to environmental conditions.


Asunto(s)
Ácido Ascórbico/metabolismo , Metilación de ADN/fisiología , Células Germinativas/fisiología , Transcriptoma/fisiología , Animales , Deficiencia de Ácido Ascórbico/fisiopatología , Recuento de Células , Proteínas de Unión al ADN/genética , Epigenómica , Femenino , Mutación con Pérdida de Función , Meiosis/fisiología , Ratones , Modelos Animales , Embarazo , Proteínas Proto-Oncogénicas/genética
16.
Cell ; 174(2): 391-405.e19, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29937225

RESUMEN

Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular , Línea Celular , Autorrenovación de las Células , Inmunoprecipitación de Cromatina , Retrovirus Endógenos/genética , Femenino , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Oligorribonucleótidos Antisentido/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Interferencia de ARN , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteína 28 que Contiene Motivos Tripartito/antagonistas & inhibidores , Proteína 28 que Contiene Motivos Tripartito/genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Regulación hacia Arriba , Nucleolina
17.
Cell Stem Cell ; 22(3): 369-383.e8, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499153

RESUMEN

A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells.


Asunto(s)
Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Biosíntesis de Proteínas , Transcripción Genética , Animales , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular , Elementos Transponibles de ADN/genética , Células Madre Embrionarias/citología , Elementos de Facilitación Genéticos/genética , Eucromatina/metabolismo , Femenino , Genoma , Código de Histonas , Masculino , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Serina-Treonina Quinasas TOR/metabolismo
18.
Cell Rep ; 22(8): 1974-1981, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466726

RESUMEN

Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes the production of 5-hydroxymethylcytosine (5hmC), rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.


Asunto(s)
Envejecimiento/patología , Encéfalo/fisiopatología , Cognición , Proteínas de Unión al ADN/metabolismo , Regeneración Nerviosa , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/fisiopatología , Dioxigenasas , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Células-Madre Neurales/metabolismo , Neurogénesis , Parabiosis
19.
Epigenetics Chromatin ; 10: 36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28706564

RESUMEN

BACKGROUND: Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. RESULTS: We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. CONCLUSIONS: These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.


Asunto(s)
Ácido Ascórbico/farmacología , Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Vitaminas/farmacología , Animales , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Metilación , Ratones
20.
Cell Rep ; 19(10): 1987-1996, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591571

RESUMEN

Primordial germ cells (PGCs) are vital for inheritance and evolution. Their transcriptional program has been extensively studied and is assumed to be well known. We report here a remarkable global upregulation of the transcriptome of mouse PGCs compared to somatic cells. Using cell-number-normalized genome-wide analyses, we uncover significant transcriptional amplification in PGCs, including mRNAs, rRNA, and transposable elements. Hypertranscription preserves tissue-specific gene expression patterns, correlates with cell size, and can still be detected in E15.5 male germ cells when proliferation has ceased. PGC hypertranscription occurs at the level of nascent transcription, is accompanied by increased translation rates, and is driven by Myc factors n-Myc and l-Myc (but not c-Myc) and by P-TEFb. This study provides a paradigm for transcriptional analyses during development and reveals a major global hyperactivity of the germline transcriptome.


Asunto(s)
Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Germinativas/metabolismo , Transcriptoma/fisiología , Animales , Embrión de Mamíferos/citología , Células Germinativas/citología , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...