Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 26(4): e16618, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561820

RESUMEN

Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of 'hitchhiking' microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%-4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.


Asunto(s)
Alphaproteobacteria , Burkholderiales , Humanos , Microplásticos , Plásticos , Transporte Biológico
2.
Mar Drugs ; 22(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38393060

RESUMEN

Marine microorganisms have been demonstrated to be an important source for bioactive molecules. In this paper we report the synthesis of Ni nanoparticles (NiSNPs) used as reducing and capping agents for five bacterial strains isolated from an Antarctic marine consortium: Marinomonas sp. ef1, Rhodococcus sp. ef1, Pseudomonas sp. ef1, Brevundimonas sp. ef1, and Bacillus sp. ef1. The NiSNPs were characterized by Ultraviolet-visible (UV-vis) spectroscopy, Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopic analysis. The maximum absorbances in the UV-Vis spectra were in the range of 374 nm to 422 nm, corresponding to the Surface plasmon resonance (SPR) of Nickel. DLS revealed NiSNPs with sizes between 40 and 45 nm. All NiSNPs were polycrystalline with a face-centered cubic lattice, as revealed by XRD analyses. The NiSNPs zeta potential values were highly negative. TEM analysis showed that the NiSNPs were either spherical or rod shaped, well segregated, and with a size between 20 and 50 nm. The FTIR spectra revealed peaks of amino acid and protein binding to the NiSNPs. Finally, all the NiSNPs possess significant antimicrobial activity, which may play an important role in the management of infectious diseases affecting human health.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Níquel , Regiones Antárticas , Nanopartículas del Metal/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química
3.
Environ Res ; 241: 117626, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956754

RESUMEN

Cost is the crucial impediment in commercializing microalgal biodiesel. Therefore, cultivating microalgae in cost-effective nutrients reduces the upstream process cost remarkably. Thus, in this study, sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement for Chlorococcum sp. and subsequent lipid extraction via an optimized solvent system for biodiesel production was investigated. Characterization of SBH revealed the presence of various monosaccharides and other sugar derivatives such as glucose, fructose, xylose, arabinose, etc. The maximum dry cell weight of 1.7 g/L was estimated in cultures grown in 10 mL SBH. Different solvents such as diethyl ether (DEE), chloroform (CHL), ethyl acetate (ETA), hexane (HEX), methanol (MET), ethanol (ETOH), acetone (ACE) and also combination of solvents (2:1 ratio) such as DEE: MET, CHL: MET, HEX: MET, HEX: ETOH was tested for lipid extraction efficacy. Among solvents used, 12.3% and 18.4% of lipids were extracted using CHL and CHL: MET, respectively, from 10 mL SBH amended cultures. However, the biodiesel yield was found to be similar at about 70.16 % in both SBH and no SBH-added cultures. The fatty acid profile of the biodiesel shows palmitic, oleic, linoleic, linolenic, and arachidonic acid as principal fatty acids. Further, the levels of SFAs, MUFAs, and PUFAs in 10 mL SBH-added cells were 24.67, 12.89, and 34.24%, respectively. Eventually, the fuel properties of Chlorococcum sp. biodiesel, satisfying international biodiesel standards, make the biodiesel a viable diesel substitute in the future.


Asunto(s)
Microalgas , Saccharum , Ácidos Grasos , Solventes , Lípidos , Biocombustibles , Carbono , Metanol , Biomasa
4.
Front Microbiol ; 14: 1197797, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396361

RESUMEN

Climate change and the induced environmental disturbances is one of the major threats that have a strong impact on bacterial communities in the Antarctic environment. To cope with the persistent extreme environment and inhospitable conditions, psychrophilic bacteria are thriving and displaying striking adaptive characteristics towards severe external factors including freezing temperature, sea ice, high radiation and salinity which indicates their potential in regulating climate change's environmental impacts. The review illustrates the different adaptation strategies of Antarctic microbes to changing climate factors at the structural, physiological and molecular level. Moreover, we discuss the recent developments in "omics" approaches to reveal polar "blackbox" of psychrophiles in order to gain a comprehensive picture of bacterial communities. The psychrophilic bacteria synthesize distinctive cold-adapted enzymes and molecules that have many more industrial applications than mesophilic ones in biotechnological industries. Hence, the review also emphasizes on the biotechnological potential of psychrophilic enzymes in different sectors and suggests the machine learning approach to study cold-adapted bacteria and engineering the industrially important enzymes for sustainable bioeconomy.

5.
RSC Adv ; 13(28): 19276-19285, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37377865

RESUMEN

One of the most concerning environmental problems is represented by petroleum and its derivatives causing contamination of aquatic and underground environments. In this work, the degradation treatment of diesel using Antarctic bacteria is proposed. Marinomonas sp. ef1 is a bacterial strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. Its potential in the degradation of hydrocarbons commonly present in diesel oil were studied. The bacterial growth was evaluated in culturing conditions that resembled the marine environment with 1% (v/v) of either diesel or biodiesel added; in both cases, Marinomonas sp. ef1 was able to grow. The chemical oxygen demand measured after the incubation of bacteria with diesel decreased, demonstrating the ability of bacteria to use diesel hydrocarbons as a carbon source and degrade them. The metabolic potential of Marinomonas to degrade aromatic compounds was supported by the identification in the genome of sequences encoding various enzymes involved in benzene and naphthalene degradation. Moreover, in the presence of biodiesel, a fluorescent yellow pigment was produced; this was isolated, purified and characterized by UV-vis and fluorescence spectroscopy, leading to its identification as a pyoverdine. These results suggest that Marinomonas sp. ef1 can be used in hydrocarbon bioremediation and in the transformation of these pollutants in molecules of interest.

6.
Environ Res ; 232: 116292, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276972

RESUMEN

Recent advancements in nanotechnology have opened new advances in agriculture. Among other nanoparticles, silicon nanoparticles (SiNPs), due to their unique physiological characteristics and structural properties, offer a significant advantage as nanofertilizers, nanopesticides, nanozeolite and targeted delivery systems in agriculture. Silicon nanoparticles are well known to improve plant growth under normal and stressful environments. Nanosilicon has been reported to enhance plant stress tolerance against various environmental stress and is considered a non-toxic and proficient alternative to control plant diseases. However, a few studies depicted the phytotoxic effects of SiNPs on specific plants. Therefore, there is a need for comprehensive research, mainly on the interaction mechanism between NPs and host plants to unravel the hidden facts about silicon nanoparticles in agriculture. The present review illustrates the potential role of silicon nanoparticles in improving plant resistance to combat different environmental (abiotic and biotic) stresses and the underlying mechanisms involved. Furthermore, our review focuses on providing the overview of various methods exploited in the biogenic synthesis of silicon nanoparticles. However, certain limitations exist in synthesizing the well-characterized SiNPs on a laboratory scale. To bridge this gap, in the last section of the review, we discussed the possible use of the machine learning approach in future as an effective, less labour-intensive and time-consuming method for silicon nanoparticle synthesis. The existing research gaps from our perspective and future research directions for utilizing SiNPs in sustainable agriculture development have also been highlighted.


Asunto(s)
Nanopartículas , Silicio , Nanopartículas/química , Agricultura , Nanotecnología , Plantas
7.
Environ Res ; 232: 116419, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321339

RESUMEN

Bacteria are major utilizers of dissolved organic matter in aquatic systems. In coastal areas bacteria are supplied with a mixture of food sources, spanning from refractory terrestrial dissolved organic matter to labile marine autochthonous organic matter. Climate scenarios indicate that in northern coastal areas, the inflow of terrestrial organic matter will increase, and autochthonous production will decrease, thus bacteria will experience a change in the food source composition. How bacteria will cope with such changes is not known. Here, we tested the ability of an isolated bacterium from the northern Baltic Sea coast, Pseudomonas sp., to adapt to varying substrates. We performed a 7-months chemostat experiment, where three different substrates were provided: glucose, representing labile autochthonous organic carbon, sodium benzoate representing refractory organic matter, and acetate - a labile but low energy food source. Growth rate has been pointed out as a key factor for fast adaptation, and since protozoan grazers speed-up the growth rate we added a ciliate to half of the incubations. The results show that the isolated Pseudomonas is adapted to utilize both labile and ring-structured refractive substrates. The growth rate was the highest on the benzoate substrate, and the production increased over time indicating that adaptation did occur. Further, our findings indicate that predation can cause Pseudomonas to change their phenotype to resist and promote survival in various carbon substrates. Genome sequencing reveals different mutations in the genome of adapted populations compared to the native populations, suggesting the adaptation of Pseudomonas sp. to changing environment.


Asunto(s)
Carbono , Materia Orgánica Disuelta , Pseudomonas , Bacterias , Aclimatación
8.
Genomics ; 115(4): 110637, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37150228

RESUMEN

In this study, the probiotic potential of B. velezensis FCW2, isolated from naturally fermented coconut water, was investigated by in vitro and genomic characterization. Our findings highlight key features of the bacterium which includes, antibacterial activity, high adhesive potential, aggregation capacity, production of nutrient secondary metabolites. In vivo safety assessment revealed no adverse effects on zebrafish. WGS data of B. velezensis FCW2 revealed a complete circular genome of 4,147,426 nucleotides and a GC content of 45.87%. We have identified 4059 coding sequence (CDS) genes that encode proteins involved in stress resistance, adhesion and micronutrient production. The genes responsible for producing secondary metabolites, exopolysaccharides, and other beneficial nutrients were identified. The KEGG and COG databases revealed that genes mainly involved amino acid metabolism, carbohydrate utilization, vitamin and cofactor metabolism, and biological adhesion. These findings suggest that B. velezensis FCW2 could be a putative probiotic in the development of fermented foods.


Asunto(s)
Cocos , Probióticos , Animales , Cocos/genética , Genoma Bacteriano , Pez Cebra , Análisis de Secuencia
9.
Gene ; 867: 147356, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36907276

RESUMEN

Staphylococcus gallinarum FCW1 was isolated from naturally fermented coconut-water and identified by biochemical and molecular methods. Probiotic characterization and safety assessment were conducted through a series of in vitro tests. A high survival rate was observed when the strain was tested for resistance to bile, lysozyme, simulated gastric and intestinal fluid, phenol, and different temperature and salt concentrations. The strain showed antagonism against some pathogens, was susceptible to all antibiotics tested except penicillin, and showed no hemolytic and DNase activity. Hydrophobicity, autoaggregation, biofilm formation, and antioxidation tests indicated that the strain possessed a high adhesive and antioxidant ability. Enzymatic activity was used to evaluate the metabolic capacities of the strain. In-vivo experiment on zebrafish was performed to check its safety status. The whole-genome sequencing indicated that the genome contained 2,880,305 bp with a GC content of 33.23%. The genome annotation confirmed the presence of probiotic-associated genes and genes for oxalate degradation, sulfate reduction, acetate metabolism, and ammonium transport in the FCW1 strain, adding to the theory that this strain may be helpful in treating kidney stones. This study revealed that the strain FCW1 might be an excellent potential probiotic in developing fermented coconut beverages and treating and preventing kidney stone disease.


Asunto(s)
Cocos , Pez Cebra , Animales , Cocos/genética , Staphylococcus/genética , Genómica
10.
Front Microbiol ; 14: 1077561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819049

RESUMEN

Salinity is one of the major environmental abiotic stress factors that limit the growth and yield of crop plants worldwide. It is crucial to understand the importance of several adaptive mechanisms in plants toward salt stress so as to increase agricultural productivity. Plant resilience toward salinity stress is improved by cohabiting with diverse microorganisms, especially bacteria. In the last few decades, increasing attention of researchers has focused on bacterial communities for promoting plant growth and fitness. The biotechnological applications of salt-tolerant plant growth-promoting rhizobacteria (PGPR) gained widespread interest for their numerous metabolites. This review provides novel insights into the importance of halotolerant (HT) bacteria associated with crop plants in enhancing plant tolerance toward salinity stress. Furthermore, the present review highlights several challenges of using HT-PGPR in the agricultural field and possible solutions to overcome those challenges for sustainable agriculture development in the future.

11.
Mar Drugs ; 20(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135747

RESUMEN

In this study, we report on the synthesis of silver nanoparticles (AgNPs) achieved by using three bacterial strains Rhodococcus, Brevundimonas and Bacillus as reducing and capping agents, newly isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. After incubation of these bacteria with a 1 mM solution of AgNO3 at 22 °C, AgNPs were synthesized within 24 h. Unlike Rhodococcus and Bacillus, the reduction of Ag+ from AgNO3 into Ag0 has never been reported for a Brevundimonas strain. The maximum absorbances of these AgNPs in the UV-Vis spectra were in the range of 404 nm and 406 nm. EDAX spectra showed strong signals from the Ag atom and medium signals from C, N and O due to capping protein emissions. TEM analysis showed that the NPs were spherical and rod-shaped, with sizes in the range of 20 to 50 nm, and they were clustered, even though not in contact with one another. Besides aggregation, all the AgNPs showed significant antimicrobial activity. This biosynthesis may play a dual role: detoxification of AgNO3 and pathogen protection against both the bacterium and ciliate. Biosynthetic AgNPs also represent a promising alternative to conventional antibiotics against common nosocomial pathogens.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Regiones Antárticas , Antibacterianos/metabolismo , Bacterias/metabolismo , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata/farmacología
12.
Mar Drugs ; 19(5)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066868

RESUMEN

In the last decade, metal nanoparticles (NPs) have gained significant interest in the field of biotechnology due to their unique physiochemical properties and potential uses in a wide range of applications. Metal NP synthesis using microorganisms has emerged as an eco-friendly, clean, and viable strategy alternative to chemical and physical approaches. Herein, an original and efficient route for the microbial synthesis of copper NPs using bacterial strains newly isolated from an Antarctic consortium is described. UV-visible spectra of the NPs showed a maximum absorbance in the range of 380-385 nm. Transmission electron microscopy analysis showed that these NPs are all monodispersed, spherical in nature, and well segregated without any agglomeration and with an average size of 30 nm. X-ray powder diffraction showed a polycrystalline nature and face centered cubic lattice and revealed characteristic diffraction peaks indicating the formation of CuONPs. Fourier-transform infrared spectra confirmed the presence of capping proteins on the NP surface that act as stabilizers. All CuONPs manifested antimicrobial activity against various types of Gram-negative; Gram-positive bacteria; and fungi pathogen microorganisms including Escherichia coli, Staphylococcus aureus, and Candida albicans. The cost-effective and eco-friendly biosynthesis of these CuONPs make them particularly attractive in several application from nanotechnology to biomedical science.


Asunto(s)
Antiinfecciosos/farmacología , Compuestos Azo/química , Compuestos Azo/farmacología , Bacterias/metabolismo , Cobre/química , Nanopartículas del Metal/química , Nanopartículas del Metal/microbiología , Regiones Antárticas , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Dispersión Dinámica de Luz , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Tecnología Química Verde , Microscopía Electrónica de Transmisión , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
Front Microbiol ; 12: 726844, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35250896

RESUMEN

Global warming scenarios indicate that in subarctic regions, the precipitation will increase in the future. Coastal bacteria will thus receive increasing organic carbon sources from land runoff. How such changes will affect the function and taxonomic composition of coastal bacteria is poorly known. We performed a 10-day experiment with two isolated bacteria: Shewanella baltica from a seaside location and Duganella sp. from a river mouth, and provided them with a plankton and a river extract as food substrate. The bacterial growth and carbon consumption were monitored over the experimental period. Shewanella and Duganella consumed 40% and 30% of the plankton extract, respectively, while the consumption of the river extract was low for both bacteria, ∼1%. Shewanella showed the highest bacterial growth efficiency (BGE) (12%) when grown on plankton extract, while when grown on river extract, the BGE was only 1%. Duganella showed low BGE when grown on plankton extract (< 1%) and slightly higher BGE when grown on river extract (2%). The cell growth yield of Duganella was higher than that of Shewanella when grown on river extract. These results indicate that Duganella is more adapted to terrestrial organic substrates with low nutritional availability, while Shewanella is adapted to eutrophied conditions. The different growth performance of the bacteria could be traced to genomic variations. A closely related genome of Shewanella was shown to harbor genes for the sequestration of autochthonously produced carbon substrates, while Duganella contained genes for the degradation of relatively refractive terrestrial organic matter. The results may reflect the influence of environmental drivers on bacterial community composition in natural aquatic environments. Elevated inflows of terrestrial organic matter to coastal areas in subarctic regions would lead to increased occurrence of bacteria adapted to the degradation of complex terrestrial compounds with a low bioavailability.

14.
Sci Rep ; 10(1): 10218, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576860

RESUMEN

We isolated a novel bacterial strain from a prokaryotic consortium associated to the psychrophilic marine ciliate Euplotes focardii, endemic of the Antarctic coastal seawater. The 16S rDNA sequencing and the phylogenetic analysis revealed the close evolutionary relationship to the Antarctic marine bacterium Marinomonas sp. BSw10506 and the sub antarctic Marinomonas polaris. We named this new strain Marinomonas sp. ef1. The optimal growth temperature in LB medium was 22 °C. Whole genome sequencing and analysis showed a reduced gene loss limited to regions encoding for transposases. Additionally, five genomic islands, e.g. DNA fragments that facilitate horizontal gene transfer phenomena, were identified. Two open reading frames predicted from the genomic islands coded for enzymes belonging to the Nitro-FMN-reductase superfamily. One of these, the putative NAD(P)H nitroreductase YfkO, has been reported to be involved in the bioreduction of silver (Ag) ions and the production of silver nanoparticles (AgNPs). After the Marinomonas sp. ef1 biomass incubation with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. The AgNPs were relatively small in size (50 nm) and had a strong antimicrobial activity against twelve common nosocomial pathogenic microorganisms including Staphylococcus aureus and two Candida strains. To our knowledge, this is the first report of AgNPs biosynthesis by a Marinomonas strain. This biosynthesis may play a dual role in detoxification from silver nitrate and protection from pathogens for the bacterium and potentially for the associated ciliate. Biosynthetic AgNPs also represent a promising alternative to conventional antibiotics against common pathogens.


Asunto(s)
Antibacterianos/administración & dosificación , Fibroblastos/efectos de los fármacos , Transferencia de Gen Horizontal , Genes Bacterianos/genética , Marinomonas/aislamiento & purificación , Nanopartículas del Metal/administración & dosificación , Plata/química , Antibacterianos/química , Antibacterianos/metabolismo , ADN Bacteriano/genética , ADN Ribosómico/genética , Euplotes/fisiología , Fibroblastos/citología , Genoma Bacteriano , Humanos , Marinomonas/clasificación , Marinomonas/genética , Marinomonas/metabolismo , Nanopartículas del Metal/química , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
15.
Genomics ; 112(5): 3268-3273, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32553480

RESUMEN

A new Alcanivorax sp. VBW004 was isolated from a shallow hydrothermal vent in Azores Island, Portugal. In this study, we determined VBW004 was resistant to copper. This strain showed maximum tolerance of copper concentrations up to 600 µg/mL. Based on 16S rRNA gene sequencing and phylogeny revealed that this strain was more closely related to Alcanivorax borkumensis SK2. We sequenced the genome of this strain that consist of 3.8 Mb size with a G + C content of 58.4 %. In addition, digital DNA-DNA hybridizations (dDDH) and the average nucleotide identities (ANI) analysis between Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9 revealed that Alcanivorax sp. VBW004 belongs to new species. Functional annotation revealed that the genome acquired multiple copper resistance encoding genes that could assist VBW004 to respond to high Cu toxicity. Our results from biosorption analysis presumed that the VBW004 is an ecologically important bacterium that could be useful for copper bioremediation.


Asunto(s)
Alcanivoraceae/metabolismo , Cobre/metabolismo , Respiraderos Hidrotermales/microbiología , Alcanivoraceae/clasificación , Alcanivoraceae/genética , Alcanivoraceae/aislamiento & purificación , Azores , Genoma Bacteriano , Genómica , Anotación de Secuencia Molecular , Filogenia
16.
Mar Drugs ; 18(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947807

RESUMEN

The synthesis of silver nanoparticles (AgNPs) by microorganisms recently gained a greater interest due to its potential to produce them in various sizes and morphologies. In this study, for AgNP biosynthesis, we used a new Pseudomonas strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. After incubation of Pseudomonas cultures with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. Scanning electron (SEM) and transmission electron microscopy (TEM) revealed spherical polydispersed AgNPs in the size range of 20-70 nm. The average size was approximately 50 nm. Energy dispersive X-ray spectroscopy (EDS) showed the presence of a high intensity absorption peak at 3 keV, a distinctive property of nanocrystalline silver products. Fourier transform infrared (FTIR) spectroscopy found the presence of a high amount of AgNP-stabilizing proteins and other secondary metabolites. X-ray diffraction (XRD) revealed a face-centred cubic (fcc) diffraction spectrum with a crystalline nature. A comparative study between the chemically synthesized and Pseudomonas AgNPs revealed a higher antibacterial activity of the latter against common nosocomial pathogen microorganisms, including Escherichia coli, Staphylococcus aureus and Candida albicans. This study reports an efficient, rapid synthesis of stable AgNPs by a new Pseudomonas strain with high antimicrobial activity.


Asunto(s)
Antibacterianos/biosíntesis , Euplotes/microbiología , Nanopartículas del Metal/química , Pseudomonas/metabolismo , Plata/química , Regiones Antárticas , Antibacterianos/farmacología , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Tecnología Química Verde/métodos , Nanopartículas del Metal/administración & dosificación , Microscopía Electrónica de Transmisión/métodos , Tamaño de la Partícula , Plata/farmacología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Staphylococcus aureus/efectos de los fármacos
17.
Microbiol Resour Announc ; 8(41)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601665

RESUMEN

We announce here the draft genome sequence of a new Pseudomonas strain, named Pseudomonas sp. strain ef1, associated with the cold-adapted Antarctic ciliate Euplotes focardii The genome sequence is 6,228,167 bp long with a G+C content of 59.7%.

18.
Sci Rep ; 8(1): 14721, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283056

RESUMEN

Oxidative stress is a particularly severe threat to Antarctic marine polar organisms because they are exposed to high dissolved oxygen and to intense UV radiation. This paper reports the features of three superoxide dismutases from the Antarctic psychrophilic ciliate Euplotes focardii that faces two environmental challenges, oxidative stress and low temperature. Two out of these are Cu,Zn superoxide dismutases (named Ef-SOD1a and Ef-SOD1b) and one belongs to the Mn-containing group (Ef-SOD2). Ef-SOD1s and Ef-SOD2 differ in their evolutionary history, expression and overall structural features. Ef-SOD1 genes are expressed at different levels, with Ef-SOD1b mRNA 20-fold higher at the ciliate optimal temperature of growth (4 °C). All Ef-SOD enzymes are active at 4 °C, consistent with the definition of cold-adapted enzymes. At the same time, they display temperatures of melting in the range 50-70 °C and retain residual activity after incubation at 65-75 °C. Supported by data of molecular dynamics simulation, we conclude that the E. focardii SODs combine cold activity, local molecular flexibility and thermo tolerance.


Asunto(s)
Cilióforos/enzimología , Euplotes/enzimología , Estrés Oxidativo/genética , Superóxido Dismutasa/química , Adaptación Fisiológica , Secuencia de Aminoácidos , Regiones Antárticas , Cilióforos/química , Frío , Euplotes/química , Euplotes/genética , Simulación de Dinámica Molecular , ARN Mensajero/química , Superóxido Dismutasa/genética , Termotolerancia/genética , Rayos Ultravioleta
19.
Can J Microbiol ; 61(3): 217-26, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25688692

RESUMEN

Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments.


Asunto(s)
Hongos/clasificación , Hongos/aislamiento & purificación , Nitratos/metabolismo , Filogenia , Agua de Mar/microbiología , Ecosistema , Hongos/genética , Hongos/metabolismo , Datos de Secuencia Molecular , Océanos y Mares , Oxidación-Reducción , Oxígeno/análisis , Oxígeno/metabolismo , Agua de Mar/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA