Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Microbiol ; 27(2): 477-490, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37500936

RESUMEN

Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.


Asunto(s)
Cajanus , Cajanus/microbiología , Ecosistema , Agricultura/métodos , Suelo/química , Bacterias , Microbiología del Suelo
2.
Int Microbiol ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707718

RESUMEN

The Western Himalayas offer diverse environments for investigating the diversity and distribution of microbial communities and their response to both the abiotic and biotic factors across the entire altitudinal gradient. Such investigations contribute significantly to our understanding of the complex ecological processes that shape microbial diversity. The proposed study focuses on the investigation of the bacterial and fungal communities in the forest and alpine grasslands of the Western Himalayan region, as well as their relationship with the physicochemical parameters of soil. A total of 185 isolates were obtained using the culture-based technique belonging to Bacillus (37%), Micrococcus (16%), and Staphylococcus (7%). Targeted metagenomics revealed the abundance of bacterial phyla Pseudomonadota (23%) followed by Acidobacteriota (20.2%), Chloroflexota (15%), and Bacillota (11.3%). At the genera level, CandidatusUdaeobacter (6%), Subgroup_2 (5.5%) of phylum Acidobacteriota, and uncultured Ktedonobacterales HSB_OF53-F07 (5.2%) of Choloroflexota phylum were found to be preponderant. Mycobiome predominantly comprised of phyla Ascomycota (54.1%), Basidiomycota (24%), and Mortierellomycota (19.1%) with Archaeorhizomyces (19.1%), Mortierella (19.1%), and Russula (5.4%) being the most abundant genera. Spearman's correlation revealed that the bacterial community was most influenced by total nitrogen in the soil followed by soil organic carbon as compared to other soil physicochemical factors. The study establishes a fundamental relationship between microbial communities and the physicochemical properties of soil. Furthermore, the study provides valuable insights into the complex interplay between biotic and abiotic factors that influence the microbial community composition of this unique region across various elevations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...