Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Leukemia ; 37(6): 1287-1297, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100881

RESUMEN

Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFß1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Ratones , Janus Quinasa 2/genética , Quinasas Janus/genética , Mutación , Trastornos Mieloproliferativos/genética , Mielofibrosis Primaria/genética , Proteínas de Unión al ARN/genética , Transducción de Señal , Factores de Transcripción STAT/genética
2.
J Clin Invest ; 132(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35587378

RESUMEN

Acute megakaryoblastic leukemia of Down syndrome (DS-AMKL) is a model of clonal evolution from a preleukemic transient myeloproliferative disorder requiring both a trisomy 21 (T21) and a GATA1s mutation to a leukemia driven by additional driver mutations. We modeled the megakaryocyte differentiation defect through stepwise gene editing of GATA1s, SMC3+/-, and MPLW515K, providing 20 different T21 or disomy 21 (D21) induced pluripotent stem cell (iPSC) clones. GATA1s profoundly reshaped iPSC-derived hematopoietic architecture with gradual myeloid-to-megakaryocyte shift and megakaryocyte differentiation alteration upon addition of SMC3 and MPL mutations. Transcriptional, chromatin accessibility, and GATA1-binding data showed alteration of essential megakaryocyte differentiation genes, including NFE2 downregulation that was associated with loss of GATA1s binding and functionally involved in megakaryocyte differentiation blockage. T21 enhanced the proliferative phenotype, reproducing the cellular and molecular abnormalities of DS-AMKL. Our study provides an array of human cell-based models revealing individual contributions of different mutations to DS-AMKL differentiation blockage, a major determinant of leukemic progression.


Asunto(s)
Síndrome de Down , Leucemia Megacarioblástica Aguda , Proteínas de Ciclo Celular/genética , Niño , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Down/genética , Factor de Transcripción GATA1/genética , Hematopoyesis , Humanos , Leucemia Megacarioblástica Aguda/complicaciones , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/metabolismo , Megacariocitos/metabolismo , Mutación , Trisomía
3.
JMIR Form Res ; 6(2): e32230, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225812

RESUMEN

BACKGROUND: Computed tomography pulmonary angiography (CTPA) is frequently used in the emergency department (ED) for the diagnosis of pulmonary embolism (PE), while posing risk for contrast-induced nephropathy and radiation-induced malignancy. OBJECTIVE: We aimed to create an automated process to calculate the Wells score for pulmonary embolism for patients in the ED, which could potentially reduce unnecessary CTPA testing. METHODS: We designed an automated process using electronic health records data elements, including using a combinatorial keyword search method to query free-text fields, and calculated automated Wells scores for a sample of all adult ED encounters that resulted in a CTPA study for PE at 2 tertiary care hospitals in New York, over a 2-month period. To validate the automated process, the scores were compared to those derived from a 2-clinician chart review. RESULTS: A total of 202 ED encounters resulted in a completed CTPA to form the retrospective study cohort. Patients classified as "PE likely" by the automated process (126/202, 62%) had a PE prevalence of 15.9%, whereas those classified as "PE unlikely" (76/202, 38%; Wells score >4) had a PE prevalence of 7.9%. With respect to classification of the patient as "PE likely," the automated process achieved an accuracy of 92.1% when compared with the chart review, with sensitivity, specificity, positive predictive value, and negative predictive value of 93%, 90.5%, 94.4%, and 88.2%, respectively. CONCLUSIONS: This was a successful development and validation of an automated process using electronic health records data elements, including free-text fields, to classify risk for PE in ED visits.

4.
Blood ; 138(22): 2231-2243, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34407546

RESUMEN

Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Interferón-alfa/uso terapéutico , Mutación/efectos de los fármacos , Trastornos Mieloproliferativos/tratamiento farmacológico , Calreticulina/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Factores Inmunológicos/farmacología , Interferón-alfa/farmacología , Janus Quinasa 2/genética , Estudios Longitudinales , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Estudios Prospectivos , Receptores de Trombopoyetina/genética , Células Tumorales Cultivadas
5.
Blood ; 138(17): 1603-1614, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34115825

RESUMEN

EZH2, the enzymatic component of PRC2, has been identified as a key factor in hematopoiesis. EZH2 loss-of-function mutations have been found in myeloproliferative neoplasms, particularly in myelofibrosis, but the precise function of EZH2 in megakaryopoiesis is not fully delineated. Here, we show that EZH2 inhibition by small molecules and short hairpin RNA induces megakaryocyte (MK) commitment by accelerating lineage marker acquisition without change in proliferation. Later in differentiation, EZH2 inhibition blocks proliferation and polyploidization and decreases proplatelet formation. EZH2 inhibitors similarly reduce MK polyploidization and proplatelet formation in vitro and platelet levels in vivo in a JAK2V617F background. In transcriptome profiling, the defect in proplatelet formation was associated with an aberrant actin cytoskeleton regulation pathway, whereas polyploidization was associated with an inhibition of expression of genes involved in DNA replication and repair and an upregulation of cyclin-dependent kinase inhibitors, particularly CDKN1A and CDKN2D. The knockdown of CDKN1A and to a lesser extent CDKN2D could partially rescue the percentage of polyploid MKs. Moreover, H3K27me3 and EZH2 chromatin immunoprecipitation assays revealed that CDKN1A is a direct EZH2 target and CDKN2D expression is not directly regulated by EZH2, suggesting that EZH2 controls MK polyploidization directly through CDKN1A and indirectly through CDKN2D.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Megacariocitos/citología , Trombopoyesis , Animales , Plaquetas/citología , Plaquetas/metabolismo , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Megacariocitos/metabolismo , Ratones , Interferencia de ARN , Transcriptoma
6.
Nat Commun ; 11(1): 4886, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985500

RESUMEN

Somatic mutations in the calreticulin (CALR) gene are associated with approximately 30% of essential thrombocythemia (ET) and primary myelofibrosis (PMF). CALR mutations, including the two most frequent 52 bp deletion (del52) and 5 bp insertion (ins5), induce a frameshift to the same alternative reading frame generating new C-terminal tails. In patients, del52 and ins5 induce two phenotypically distinct myeloproliferative neoplasms (MPNs). They are equally found in ET, but del52 is more frequent in PMF. We generated heterozygous and homozygous conditional inducible knock-in (KI) mice expressing a chimeric murine CALR del52 or ins5 with the human mutated C-terminal tail to investigate their pathogenic effects on hematopoiesis. Del52 induces greater phenotypic changes than ins5 including thrombocytosis, leukocytosis, splenomegaly, bone marrow hypocellularity, megakaryocytic lineage amplification, expansion and competitive advantage of the hematopoietic stem cell compartment. Homozygosity amplifies these features, suggesting a distinct contribution of homozygous clones to human MPNs. Moreover, homozygous del52 KI mice display features of a penetrant myelofibrosis-like disorder with extramedullary hematopoiesis linked to splenomegaly, megakaryocyte hyperplasia and the presence of reticulin fibers. Overall, modeling del52 and ins5 mutations in mice successfully recapitulates the differences in phenotypes observed in patients.


Asunto(s)
Calreticulina/genética , Mielofibrosis Primaria/genética , Trombocitemia Esencial/genética , Animales , Calreticulina/metabolismo , Modelos Animales de Enfermedad , Femenino , Células Madre Hematopoyéticas/metabolismo , Homocigoto , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional , Fenotipo , Mielofibrosis Primaria/metabolismo , Eliminación de Secuencia , Trombocitemia Esencial/metabolismo
7.
Cell ; 182(6): 1401-1418.e18, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32810439

RESUMEN

Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , Citometría de Flujo , Humanos , Complejo de Antígeno L1 de Leucocito , Monocitos , Células Mieloides , Estudios Prospectivos , SARS-CoV-2
8.
Oncogene ; 39(31): 5323-5337, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32572159

RESUMEN

Mutations of calreticulin (CALRm) define a subtype of myeloproliferative neoplasms (MPN). We studied the biological and genetic features of CALR-mutated essential thrombocythemia and myelofibrosis patients. In most cases, CALRm were found in granulocytes, monocytes, B and NK cells, but also in T cells. However, the type 1 CALRm spreads more easily than the type 2 CALRm in lymphoid cells. The CALRm were also associated with an early clonal dominance at the level of hematopoietic stem and progenitor cells (HSPC) with no significant increase during granulo/monocytic differentiation in most cases. Moreover, we found that half of type 2 CALRm patients harbors some homozygous progenitors. Those patients were associated with a higher clonal dominance during granulo/monocytic differentiation than patients with only heterozygous type 2 CALRm progenitors. When associated mutations were present, CALRm were the first genetic event suggesting that they are both the initiating and phenotypic event. In blood, type 1 CALRm led to a greater increased number of all types of progenitors compared with the type 2 CALRm. However, both types of CALRm induced an increase in megakaryocytic progenitors associated with a ruxolitinib-sensitive independent growth and with a mild constitutive signaling in megakaryocytes. At the transcriptional level, type 1 CALRm seems to deregulate more pathways than the type 2 CALRm in megakaryocytes. Altogether, our results show that CALRm modify both the HSPC and megakaryocyte biology with a stronger effect for type 1 than for type 2 CALRm.


Asunto(s)
Calreticulina/efectos adversos , Hematopoyesis/efectos de los fármacos , Trastornos Mieloproliferativos/genética , Femenino , Humanos , Masculino , Mutación
9.
Haematologica ; 105(1): 112-123, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048357

RESUMEN

The functional diversity of cells that compose myeloid malignancies, i.e., the respective roles of genetic and epigenetic heterogeneity in this diversity, remains poorly understood. This question is addressed in chronic myelomonocytic leukemia, a myeloid neoplasm in which clinical diversity contrasts with limited genetic heterogeneity. To generate induced pluripotent stem cell clones, we reprogrammed CD34+ cells collected from a patient with a chronic myelomonocytic leukemia in which whole exome sequencing of peripheral blood monocyte DNA had identified 12 gene mutations, including a mutation in KDM6A and two heterozygous mutations in TET2 in the founding clone and a secondary KRAS(G12D) mutation. CD34+ cells from an age-matched healthy donor were also reprogrammed. We captured a part of the genetic heterogeneity observed in the patient, i.e. we analyzed five clones with two genetic backgrounds, without and with the KRAS(G12D) mutation. Hematopoietic differentiation of these clones recapitulated the main features of the patient's disease, including overproduction of granulomonocytes and dysmegakaryopoiesis. These analyses also disclosed significant discrepancies in the behavior of hematopoietic cells derived from induced pluripotent stem cell clones with similar genetic background, correlating with limited epigenetic changes. These analyses suggest that, beyond the coding mutations, several levels of intraclonal heterogeneity may participate in the yet unexplained clinical heterogeneity of the disease.


Asunto(s)
Leucemia Mielomonocítica Crónica , Leucemia Mielomonocítica Juvenil , Trastornos Mieloproliferativos , Humanos , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Juvenil/genética , Mutación , Secuenciación del Exoma
10.
Eur Urol Oncol ; 3(4): 498-508, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31412010

RESUMEN

BACKGROUND: Genomic analysis of circulating tumor cells (CTCs) could provide a unique and accessible representation of tumor diversity but remains hindered by technical challenges associated with CTC rarity and heterogeneity. OBJECTIVE: To evaluate CTCs as surrogate samples for genomic analyses in metastatic castration-resistant prostate cancer (mCRPC). DESIGN, SETTING, AND PARTICIPANTS: Three isolation strategies (filter laser-capture microdissection, self-seeding microwell chips, and fluorescence-activated cell sorting) were developed to capture CTCs with various epithelial and mesenchymal phenotypes and isolate them at the single-cell level. Whole-genome amplification (WGA) and WGA quality control were performed on 179 CTC samples, matched metastasis biopsies, and negative controls from 11 patients. All patients but one were pretreated with enzalutamide or abiraterone. Whole-exome sequencing (WES) of 34 CTC samples, metastasis biopsies, and negative controls were performed for seven patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: WES of CTCs was rigorously qualified in terms of percentage coverage at 10× depth, allelic dropout, and uncovered regions. Shared somatic mutations between CTCs and matched metastasis biopsies were identified. A customized approach based on determination of mutation rates for CTC samples was developed for identification of CTC-exclusive mutations. RESULTS AND LIMITATIONS: Shared mutations were mostly detected in epithelial CTCs and were recurrent. For two patients for whom a deeper analysis was performed, a few CTCs were sufficient to represent half to one-third of the mutations in the matched metastasis biopsy. CTC-exclusive mutations were identified in both epithelial and nonepithelial CTCs and affected cytoskeleton, invasion, DNA repair, and cancer-driver genes. Some 41% of CTC-exclusive mutations had a predicted deleterious impact on protein function. Phylogenic relationships between CTCs with distinct phenotypes were evidenced. CONCLUSIONS: CTCs can provide unique insight into metastasis mutational diversity and reveal undiagnosed genomic aberrations in matched metastasis biopsies. PATIENT SUMMARY: Our results demonstrate the clinical potential of circulating tumor cells to provide insight into metastatic events that could be critical to target using precision medicine.


Asunto(s)
Análisis Mutacional de ADN , Secuenciación del Exoma , Mutación , Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Anciano , Humanos , Masculino , Persona de Mediana Edad
11.
Cancer Discov ; 9(6): 796-811, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31018969

RESUMEN

The ETS-domain transcription factors divide into subfamilies based on protein similarities, DNA-binding sequences, and interaction with cofactors. They are regulated by extracellular clues and contribute to cellular processes, including proliferation and transformation. ETS genes are targeted through genomic rearrangements in oncogenesis. The PU.1/SPI1 gene is inactivated by point mutations in human myeloid malignancies. We identified a recurrent somatic mutation (Q226E) in PU.1/SPI1 in Waldenström macroglobulinemia, a B-cell lymphoproliferative disorder. It affects the DNA-binding affinity of the protein and allows the mutant protein to more frequently bind and activate promoter regions with respect to wild-type protein. Mutant SPI1 binding at promoters activates gene sets typically promoted by other ETS factors, resulting in enhanced proliferation and decreased terminal B-cell differentiation in model cell lines and primary samples. In summary, we describe oncogenic subversion of transcription factor function through subtle alteration of DNA binding leading to cellular proliferation and differentiation arrest. SIGNIFICANCE: The demonstration that a somatic point mutation tips the balance of genome-binding pattern provides a mechanistic paradigm for how missense mutations in transcription factor genes may be oncogenic in human tumors.This article is highlighted in the In This Issue feature, p. 681.


Asunto(s)
Regulación de la Expresión Génica , Mutación Missense , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Macroglobulinemia de Waldenström/genética , Macroglobulinemia de Waldenström/metabolismo , Animales , Azepinas/farmacología , Linfocitos B/citología , Linfocitos B/metabolismo , Secuencia de Bases , Sitios de Unión , Línea Celular , Proliferación Celular , Humanos , Lenalidomida/farmacología , Ratones , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Motivos de Nucleótidos , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Transactivadores/genética , Factores de Transcripción/metabolismo , Triazoles/farmacología , Macroglobulinemia de Waldenström/diagnóstico
12.
Leukemia ; 33(10): 2466-2480, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30894665

RESUMEN

Islands of CD123high cells have been commonly described in the bone marrow of patients with chronic myelomonocytic leukemia (CMML). Using a multiparameter flow cytometry assay, we detected an excess of CD123+ mononucleated cells that are lineage-negative, CD45+, CD11c-, CD33-, HLA-DR+, BDCA-2+, BDCA-4+ in the bone marrow of 32/159 (20%) patients. Conventional and electron microscopy, flow cytometry detection of cell surface markers, gene expression analyses, and the ability to synthesize interferon alpha in response to Toll-like receptor agonists identified these cells as bona fide plasmacytoid dendritic cells (pDCs). Whole-exome sequencing of sorted monocytes and pDCs identified somatic mutations in genes of the oncogenic RAS pathway in the two cell types of every patient. CD34+ cells could generate high amount of pDCs in the absence of FMS-like tyrosine kinase 3-ligand (FLT3L). Finally, an excess of pDCs correlates with regulatory T cell accumulation and an increased risk of acute leukemia transformation. These results demonstrate the FLT3L-independent accumulation of clonal pDCs in the bone marrow of CMML patients with mutations affecting the RAS pathway, which is associated with a higher risk of disease progression.


Asunto(s)
Células Dendríticas/patología , Leucemia Mielomonocítica Crónica/patología , Anciano , Anciano de 80 o más Años , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Médula Ósea/metabolismo , Médula Ósea/patología , Células Dendríticas/metabolismo , Femenino , Humanos , Leucemia Mielomonocítica Crónica/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Pronóstico , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología
13.
Blood Adv ; 2(13): 1616-1627, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29986854

RESUMEN

JAK3-activating mutations are commonly seen in chronic or acute hematologic malignancies affecting the myeloid, megakaryocytic, lymphoid, and natural killer (NK) cell compartment. Overexpression models of mutant JAK3 or pharmacologic inhibition of its kinase activity have highlighted the role that these constitutively activated mutants play in the T-cell, NK cell, and megakaryocytic lineages, but to date, the functional impact of JAK3 mutations at an endogenous level remains unknown. Here, we report a JAK3A572V knockin mouse model and demonstrate that activated JAK3 leads to a progressive and dose-dependent expansion of CD8+ T cells in the periphery before colonization of the bone marrow. This phenotype is dependent on the γc chain of cytokine receptors and presents several features of the human leukemic form of cutaneous T-cell lymphoma (L-CTCL), including skin involvements. We also showed that the JAK3A572V-positive malignant cells are transplantable and phenotypically heterogeneous in bone marrow transplantation assays. Interestingly, we revealed that activated JAK3 functionally cooperates with partial trisomy 21 in vivo to enhance the L-CTCL phenotype, ultimately leading to a lethal and fully penetrant disorder. Finally, we assessed the efficacy of JAK3 inhibition and showed that CTCL JAK3A572V-positive T cells are sensitive to tofacitinib, which provides additional preclinical insights into the use of JAK3 inhibitors in these disorders. Altogether, this JAK3A572V knockin model is a relevant new tool for testing the efficacy of JAK inhibitors in JAK3-related hematopoietic malignancies.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Neoplasias Hematológicas/metabolismo , Janus Quinasa 3/metabolismo , Linfoma Cutáneo de Células T/metabolismo , Mutación Missense , Neoplasias Experimentales/metabolismo , Trisomía , Sustitución de Aminoácidos , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Cromosomas de los Mamíferos/genética , Técnicas de Sustitución del Gen , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Janus Quinasa 3/genética , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/patología , Ratones , Ratones Transgénicos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología
15.
Am J Hematol ; 93(2): 195-204, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29090484

RESUMEN

Rare gain-of-function mutations within the ITGA2B or ITGB3 genes have been recognized to cause macrothrombocytopenia (MTP). Here we report three new families with autosomal dominant (AD) MTP, two harboring the same mutation of ITGA2B, αIIbR995W, and a third family with an ITGB3 mutation, ß3D723H. In silico analysis shows how the two mutated amino acids directly modify the salt bridge linking the intra-cytoplasmic part of αIIb to ß3 of the integrin αIIbß3. For all affected patients, the bleeding syndrome and MTP was mild to moderate. Platelet aggregation tended to be reduced but not absent. Electron microscopy associated with a morphometric analysis revealed large round platelets; a feature being the presence of abnormal large α-granules with some giant forms showing signs of fusion. Analysis of the maturation and development of megakaryocytes reveal no defect in their early maturation but abnormal proplatelet formation was observed with increased size of the tips. Interestingly, this study revealed that in addition to the classical phenotype of patients with αIIbß3 intracytoplasmic mutations there is an abnormal maturation of α-granules. It is now necessary to determine if this feature is a characteristic of all mutations disturbing the αIIb R995/ß3 D723 salt bridge.


Asunto(s)
Gránulos Citoplasmáticos/patología , Integrina alfa2/genética , Integrina beta3/genética , Trombocitopenia/etiología , Plaquetas/ultraestructura , Simulación por Computador , Familia , Humanos , Megacariocitos , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química
16.
Nat Commun ; 8(1): 1786, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29176689

RESUMEN

Thrombocytopenia is a major side effect of a new class of anticancer agents that target histone deacetylase (HDAC). Their mechanism is poorly understood. Here, we show that HDAC6 inhibition and genetic knockdown lead to a strong decrease in human proplatelet formation (PPF). Unexpectedly, HDAC6 inhibition-induced tubulin hyperacetylation has no effect on PPF. The PPF decrease induced by HDAC6 inhibition is related to cortactin (CTTN) hyperacetylation associated with actin disorganization inducing important changes in the distribution of megakaryocyte (MK) organelles. CTTN silencing in human MKs phenocopies HDAC6 inactivation and knockdown leads to a strong PPF defect. This is rescued by forced expression of a deacetylated CTTN mimetic. Unexpectedly, unlike human-derived MKs, HDAC6 and CTTN are shown to be dispensable for mouse PPF in vitro and platelet production in vivo. Our results highlight an unexpected function of HDAC6-CTTN axis as a positive regulator of human but not mouse MK maturation.


Asunto(s)
Cortactina/metabolismo , Histona Desacetilasa 6/metabolismo , Megacariocitos/metabolismo , Trombocitopenia/metabolismo , Acetilación/efectos de los fármacos , Animales , Plaquetas/citología , Plaquetas/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Cortactina/genética , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Megacariocitos/citología , Ratones Noqueados , Pirimidinas/farmacología , Interferencia de ARN , Trombocitopenia/genética
17.
Cancer Cell ; 31(3): 452-465, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28292442

RESUMEN

Chimeric transcription factors are a hallmark of human leukemia, but the molecular mechanisms by which they block differentiation and promote aberrant self-renewal remain unclear. Here, we demonstrate that the ETO2-GLIS2 fusion oncoprotein, which is found in aggressive acute megakaryoblastic leukemia, confers megakaryocytic identity via the GLIS2 moiety while both ETO2 and GLIS2 domains are required to drive increased self-renewal properties. ETO2-GLIS2 directly binds DNA to control transcription of associated genes by upregulation of expression and interaction with the ETS-related ERG protein at enhancer elements. Importantly, specific interference with ETO2-GLIS2 oligomerization reverses the transcriptional activation at enhancers and promotes megakaryocytic differentiation, providing a relevant interface to target in this poor-prognosis pediatric leukemia.


Asunto(s)
Leucemia Megacarioblástica Aguda/patología , Proteínas de Fusión Oncogénica/fisiología , Activación Transcripcional , Animales , Diferenciación Celular , Niño , Elementos de Facilitación Genéticos , Factor de Transcripción GATA1/genética , Humanos , Ratones , Proteínas de Fusión Oncogénica/química , Regulador Transcripcional ERG/fisiología
18.
Haematologica ; 101(12): 1469-1478, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27515249

RESUMEN

Megakaryocytes are naturally polyploid cells that increase their ploidy by endomitosis. However, very little is known regarding the mechanism by which they escape the tetraploid checkpoint to become polyploid. Recently, it has been shown that the tetraploid checkpoint was regulated by the Hippo-p53 pathway in response to a downregulation of Rho activity. We therefore analyzed the role of Hippo-p53 pathway in the regulation of human megakaryocyte polyploidy. Our results revealed that Hippo-p53 signaling pathway proteins are present and are functional in megakaryocytes. Although this pathway responds to the genotoxic stress agent etoposide, it is not activated in tetraploid or polyploid megakaryocytes. Furthermore, Hippo pathway was observed to be uncoupled from Rho activity. Additionally, polyploid megakaryocytes showed increased expression of YAP target genes when compared to diploid and tetraploid megakaryocytes. Although p53 knockdown increased both modal ploidy and proplatelet formation in megakaryocytes, YAP knockdown caused no significant change in ploidy while moderately affecting proplatelet formation. Interestingly, YAP knockdown reduced the mitochondrial mass in polyploid megakaryocytes and decreased expression of PGC1α, an important mitochondrial biogenesis regulator. Thus, the Hippo pathway is functional in megakaryocytes, but is not induced by tetraploidy. Additionally, YAP regulates the mitochondrial mass in polyploid megakaryocytes.


Asunto(s)
Diferenciación Celular , Megacariocitos/citología , Megacariocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Tetraploidía , Proteínas de Unión al GTP rho/metabolismo , Biomarcadores , Plaquetas/citología , Plaquetas/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular/genética , Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vía de Señalización Hippo , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Poliploidía , Proteínas Serina-Treonina Quinasas/genética , Trombopoyesis/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Unión al GTP rho/genética
19.
DNA Repair (Amst) ; 43: 78-88, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27289557

RESUMEN

The family of Ten-Eleven Translocation (TET) proteins is implicated in the process of active DNA demethylation and thus in epigenetic regulation. TET 1, 2 and 3 proteins are oxygenases that can hydroxylate 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC) and further oxidize 5-hmC into 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). The base excision repair (BER) pathway removes the resulting 5-fC and 5-caC bases paired with a guanine and replaces them with regular cytosine. The question arises whether active modification of 5-mC residues and their subsequent elimination could affect the genomic DNA stability. Here, we generated two inducible cell lines (Ba/F3-EPOR, and UT7) overexpressing wild-type or catalytically inactive human TET2 proteins. Wild-type TET2 induction resulted in an increased level of 5-hmC and a cell cycle defect in S phase associated with higher level of phosphorylated P53, chromosomal and centrosomal abnormalities. Furthermore, in a thymine-DNA glycosylase (Tdg) deficient context, the TET2-mediated increase of 5-hmC induces mutagenesis characterized by GC>AT transitions in CpG context suggesting a mutagenic potential of 5-hmC metabolites. Altogether, these data suggest that TET2 activity and the levels of 5-hmC and its derivatives should be tightly controlled to avoid genetic and chromosomal instabilities. Moreover, TET2-mediated active demethylation might be a very dangerous process if used to entirely demethylate the genome and might rather be used only at specific loci.


Asunto(s)
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Mutagénesis , Proteínas Proto-Oncogénicas/genética , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Secuencia de Bases , Línea Celular , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Hidroxilación , Células Progenitoras de Megacariocitos/citología , Células Progenitoras de Megacariocitos/metabolismo , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Fase S , Timina ADN Glicosilasa/deficiencia , Timina ADN Glicosilasa/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Oncotarget ; 7(22): 31980-92, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-26959882

RESUMEN

TP53 also known as p53 is a tumor suppressor gene mutated in a variety of cancers. P53 is involved in cell cycle, apoptosis and DNA repair mechanisms and is thus tightly controlled by many regulators. Recently, strategies to treat cancer have focused on the development of MDM2 antagonists to induce p53 stabilization and restore cell death in p53 non-mutated cancers. However, some of these molecules display adverse effects in patients including induction of thrombocytopenia. In the present study, we have explored the effect of SAR405838 not only on human megakaryopoiesis but also more generally on hematopoiesis. We compared its effect to MI-219 and Nutlin, which are less potent MDM2 antagonists than SAR405838. We found that all these compounds induce a deleterious effect on all types of hematopoietic progenitors, as well as on erythroid and megakaryocytic differentiation. Moreover, they inhibit both early and late stages of megakaryopoiesis including ploidization and proplatelet formation. In conclusion, MDM2 antagonists induced a major hematopoietic defect in vitro as well as an inhibition of all stages of megakaryopoiesis that may account for in vivo thrombocytopenia observed in treated patients.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Indoles/toxicidad , Compuestos de Espiro/toxicidad , Trombopoyesis/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Antígenos CD34/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Imidazoles/farmacología , Indoles/farmacología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Compuestos de Espiro/farmacología , Trombocitopenia/sangre , Trombocitopenia/inducido químicamente , Factores de Tiempo , Transfección , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...