Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798577

RESUMEN

The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. To demonstrate that this translates to more effective cure, we first confirmed the role of rifampin, with or without pyrazinamide, as essential to achieve effective bactericidal responses and sterilizing cure in the current standard of care regimen in chronically infected C3HeB/FeJ mice compared to BALB/c mice. Thus, demonstrating added value in testing clinically relevant regimens in murine models of increasing pathologic complexity. Next we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models including mice exhibiting advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.

2.
Antimicrob Agents Chemother ; 67(11): e0059723, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37791784

RESUMEN

BTZ-043, a suicide inhibitor of the Mycobacterium tuberculosis cell wall synthesis decaprenylphosphoryl-beta-D-ribose 2' epimerase, is under clinical development as a potential new anti-tuberculosis agent. BTZ-043 is potent and bactericidal in vitro but has limited activity against non-growing bacilli in rabbit caseum. To better understand its behavior in vivo, BTZ-043 was evaluated for efficacy and spatial drug distribution as a single agent in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon Mycobacterium tuberculosis infection. BTZ-043 promoted significant reductions in lung and spleen bacterial burdens in the C3HeB/FeJ mouse model after 2 months of therapy. BTZ-043 penetrates cellular and necrotic lesions and was retained at levels above the serum-shifted minimal inhibitory concentration in caseum. The calculated rate of kill was found to be highest and dose-dependent during the second month of treatment. BTZ-043 treatment was associated with improved histology scores of pulmonary lesions, especially compared to control mice, which experienced advanced fulminant neutrophilic alveolitis in the absence of treatment. These positive treatment responses to BTZ-043 monotherapy in a mouse model of advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in the caseum, and its high potency and bactericidal nature at drug concentrations achieved in necrotic lesions.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Ratones , Animales , Conejos , Ratones Endogámicos C3H , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Ratones Endogámicos
3.
Antimicrob Agents Chemother ; 67(9): e0028423, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37565762

RESUMEN

Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Ratones Endogámicos C3H , Tuberculosis/tratamiento farmacológico , Pulmón/microbiología , Ratones Endogámicos
4.
Antimicrob Agents Chemother ; 66(4): e0231021, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35311519

RESUMEN

Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions. We confirmed that different pharmacodynamic markers measure distinct biological responses. We found that a combination of pharmacodynamic markers distinguishes between treatments better than any single marker. The combination of the RS ratio with CFU showed the greatest ability to recapitulate the rank order of regimen treatment-shortening activity, providing proof of concept that simultaneous assessment of pharmacodynamic markers measuring different properties will enhance insight gained from animal models and accelerate development of new combination regimens. These results suggest potential for a new era in which antimicrobial therapies are evaluated not only on culture-based measures of bacterial burden but also on molecular assays that indicate how drugs impact the physiological state of the pathogen.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
5.
Antimicrob Agents Chemother ; 65(11): e0058321, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34370580

RESUMEN

Multiple drug discovery initiatives for tuberculosis are currently ongoing to identify and develop new potent drugs with novel targets in order to shorten treatment duration. One of the drug classes with a new mode of action is DprE1 inhibitors targeting an essential process in cell wall synthesis of Mycobacterium tuberculosis. In this investigation, three DprE1 inhibitors currently in clinical trials, TBA-7371, PBTZ169, and OPC-167832, were evaluated side-by-side as single agents in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon tuberculosis infection. The goal was to confirm the efficacy of the DprE1 inhibitors in a mouse tuberculosis model with advanced pulmonary pathology and perform comprehensive analysis of plasma, lung, and lesion-centric drug levels to establish pharmacokinetic-pharmacodynamic (PK-PD) parameters predicting efficacy at the site of infection. Results showed significant efficacy for all three DprE1 inhibitors in the C3HeB/FeJ mouse model after 2 months of treatment. Superior efficacy was observed for OPC-167832 even at low-dose levels, which can be attributed to its low MIC, favorable distribution, and sustained retention above the MIC throughout the dosing interval in caseous necrotic lesions, where the majority of bacteria reside in C3HeB/FeJ mice. These results support further progression of the three drug candidates through clinical development for tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Tiazinas , Tuberculosis , Animales , Ratones , Ratones Endogámicos C3H , Piperazinas , Tuberculosis/tratamiento farmacológico
6.
Nat Commun ; 12(1): 2899, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006838

RESUMEN

There is urgent need for new drug regimens that more rapidly cure tuberculosis (TB). Existing TB drugs and regimens vary in treatment-shortening activity, but the molecular basis of these differences is unclear, and no existing assay directly quantifies the ability of a drug or regimen to shorten treatment. Here, we show that drugs historically classified as sterilizing and non-sterilizing have distinct impacts on a fundamental aspect of Mycobacterium tuberculosis physiology: ribosomal RNA (rRNA) synthesis. In culture, in mice, and in human studies, measurement of precursor rRNA reveals that sterilizing drugs and highly effective drug regimens profoundly suppress M. tuberculosis rRNA synthesis, whereas non-sterilizing drugs and weaker regimens do not. The rRNA synthesis ratio provides a readout of drug effect that is orthogonal to traditional measures of bacterial burden. We propose that this metric of drug activity may accelerate the development of shorter TB regimens.


Asunto(s)
Antituberculosos/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Tuberculosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Precursores del ARN/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/genética , Resultado del Tratamiento , Tuberculosis/diagnóstico , Tuberculosis/microbiología
7.
Sci Rep ; 10(1): 6047, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269234

RESUMEN

Efforts to develop effective and safe drugs for treatment of tuberculosis require preclinical evaluation in animal models. Alongside efficacy testing of novel therapies, effects on pulmonary pathology and disease progression are monitored by using histopathology images from these infected animals. To compare the severity of disease across treatment cohorts, pathologists have historically assigned a semi-quantitative histopathology score that may be subjective in terms of their training, experience, and personal bias. Manual histopathology therefore has limitations regarding reproducibility between studies and pathologists, potentially masking successful treatments. This report describes a pathologist-assistive software tool that reduces these user limitations, while providing a rapid, quantitative scoring system for digital histopathology image analysis. The software, called 'Lesion Image Recognition and Analysis' (LIRA), employs convolutional neural networks to classify seven different pathology features, including three different lesion types from pulmonary tissues of the C3HeB/FeJ tuberculosis mouse model. LIRA was developed to improve the efficiency of histopathology analysis for mouse tuberculosis infection models, this approach has also broader applications to other disease models and tissues. The full source code and documentation is available from https://Github.com/TB-imaging/LIRA.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Mycobacterium tuberculosis/fisiología , Tuberculosis Pulmonar/diagnóstico por imagen , Algoritmos , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C3H , Redes Neurales de la Computación , Programas Informáticos , Tuberculosis Pulmonar/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...