Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Psychiatry ; 15: 1293514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832325

RESUMEN

Recent resilience research has increasingly emphasized the importance of focusing on investigating the protective factors in mentally healthy populations, complementing the traditional focus on psychopathology. Social support has emerged as a crucial element within the complex interplay of individual and socio-environmental factors that shape resilience. However, the neural underpinnings of the relationship between social support and resilience, particularly in healthy subjects, remain largely unexplored. With advances in neuroimaging techniques, such as ultra-high field MRI at 7T and beyond, researchers can more effectively investigate the neural mechanisms underlying these factors. Thus, our study employed ultra-high field rs-fMRI to explore how social support moderates the relationship between psychological resilience and functional connectivity in a healthy cohort. We hypothesized that enhanced social support would amplify resilience-associated connectivity within neural circuits essential for emotional regulation, cognitive processing, and adaptive problem-solving, signifying a synergistic interaction where strong social networks bolster the neural underpinnings of resilience. (n = 30). Through seed-based functional connectivity analyses and interaction analysis, we aimed to uncover the neural correlates at the interplay of social support and resilience. Our findings indicate that perceived social support significantly (p<0.001) alters functional connectivity in the right and left FP, PCC, and left hippocampus, affirming the pivotal roles of these regions in the brain's resilience network. Moreover, we identified significant moderation effects of social support across various brain regions, each showing unique connectivity patterns. Specifically, the right FP demonstrated a significant interaction effect where high social support levels were linked to increased connectivity with regions involved in socio-cognitive processing, while low social support showed opposite effects. Similar patterns by social support levels were observed in the left FP, with connectivity changes in clusters associated with emotional regulation and cognitive functions. The PCC's connectivity was distinctly influenced by support levels, elucidating its role in emotional and social cognition. Interestingly, the connectivity of the left hippocampus was not significantly impacted by social support levels, indicating a unique pattern within this region. These insights highlight the importance of high social support levels in enhancing the neural foundations of resilience and fostering adaptive neurological responses to environmental challenges.

2.
Indian J Psychiatry ; 66(1): 71-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38419936

RESUMEN

Background: Environmental factors considerably influence the development of the human cortex during the perinatal period, early childhood, and adolescence. Urban upbringing in the first 15 years of life is a known risk factor for schizophrenia (SCZ). Though the risk of urban birth and upbringing is well-examined from an epidemiological perspective, the biological mechanisms underlying urban upbringing remain unknown. The effect of urban birth and upbringing on functional brain connectivity in SCZ patients is not yet examined. Methods: This is a secondary data analysis of three studies that included 87 patients with SCZ and 70 healthy volunteers (HV) aged 18 to 50 years. We calculated the developmental urbanicity index using a validated method in earlier studies. Following standard pre-processing of resting functional magnetic resonance imaging (fMRI) scans, seed-return on investment (ROI) functional connectivity analysis was performed. Results: The results showed a significant association between urban birth and upbringing on functional connectivity in SCZ patients and HV (P < 0.05). In SCZ patients, connections from the right caudate, anterior cingulate cortex, left and right intracalcarine cortices, left and right lingual gyri, left posterior parahippocampal cortex to the cerebellum, fusiform gyri, lateral occipital cortex, and amygdala were significantly associated with the urbanicity index (P < 0.05). Conclusions: These study findings suggest a significant association between urban birth and upbringing on functional brain connectivity in regions involved in reward processing and social cognition in SCZ. Assessment of social cognition could have implications in developing an in-depth understanding of this impairment in persons with SCZ.

3.
Hum Brain Mapp ; 44(11): 4225-4238, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232486

RESUMEN

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and phonic tics, which several different theories, such as basal ganglia-thalamo-cortical loop dysfunction and amygdala hypersensitivity, have sought to explain. Previous research has shown dynamic changes in the brain prior to tic onset leading to tics, and this study aims to investigate the contribution of network dynamics to them. For this, we have employed three methods of functional connectivity to resting-state fMRI data - namely the static, the sliding window dynamic and the ICA based estimated dynamic; followed by an examination of the static and dynamic network topological properties. A leave-one-out (LOO-) validated regression model with LASSO regularization was used to identify the key predictors. The relevant predictors pointed to dysfunction of the primary motor cortex, the prefrontal-basal ganglia loop and amygdala-mediated visual social processing network. This is in line with a recently proposed social decision-making dysfunction hypothesis, opening new horizons in understanding tic pathophysiology.


Asunto(s)
Tics , Síndrome de Tourette , Humanos , Tics/diagnóstico por imagen , Síndrome de Tourette/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Ganglios Basales
4.
Neuroimage Clin ; 36: 103249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451355

RESUMEN

INTRODUCTION: The insular cortex is part of a network of highly connected cerebral "rich club" - regions and has been implicated in the pathophysiology of various psychiatric and neurological disorders, of which major depressive disease is one of the most prevalent. "Rich club" vulnerability can be a contributing factor in disease development. High-resolution structural subfield analysis of insular volume in combination with cortical thickness measurements and psychological testing might elucidate the way in which the insula is changed in depression. MATERIAL AND METHODS: High-resolution structural images of the brain were acquired using a 7T-MRI scanner. The mean grey matter volume and cortical thickness within the insular subfields were analysed using voxel-based morphometry (VBM) and surface analysis techniques respectively. Insular subfields were defined according to the Brainnetome Atlas for VBM - and the Destrieux-Atlas for cortical thickness - analysis. Thirty-three patients with confirmed major depressive disease, as well as thirty-one healthy controls matched for age and gender, were measured. The severity of depression in MDD patients was measured via a BDI-II score and objective clinical assessment (AMDP). Intergroup statistical analysis was performed using ANCOVA. An intragroup multivariate regression analysis of patient psychological test results was calculated. Corrections for multiple comparisons was performed using FDR. RESULTS: Significant differences between groups were observed in the left granular dorsal insula according to VBM-analysis. AMDP-scores positively correlated with cortical thickness in the right superior segment of the circular insular sulcus. CONCLUSIONS: The combination of differences in grey matter volume between healthy controls and patients with a positive correlation of cortical thickness with disease severity underscores the insula's role in the pathogeneses of MDD. The connectivity hub insular cortex seems vulnerable to disruption in context of affective disease.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Corteza Insular , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen
5.
Front Psychiatry ; 13: 958688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072455

RESUMEN

Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 234-237, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086347

RESUMEN

Traditionally, the diagnosis of schizophrenia was based on the psychiatrist's introspective diagnosis through clinical stratification factors and score-scales, which led to heterogeneity and discrepancy in the symptoms and results. However, there are many studies trying to improve and assist in how its diagnosis could be performed. To objectively classify schizophrenia patients it is required to determine quantitative biomarkers of the disease. In this contribution we propose a method based on feature extraction both in magnetic resonance (MR) and Positron Emission Tomography (PET) imaging. A dataset of 34 participants (17 patients and 17 control subjects) were analyzed and 5 different brain regions were studied (frontal cortex, posterior cingulate cortex, temporal cortex, primary auditory cortex and thalamus). Following a radiomics approach, 43 texture features were extracted using five different statistical methods. These features were used for the training of the five different predictive models (Linear SVM, Gaussian SVM, Bagged Tree, KNN and Naive Bayes). The precision results were obtained classifying schizophrenia both in MR images (89% Area Under the Curve (AUC) in the posterior cingulate cortex) and with PET images (82% AUC in the frontal cortex), being Linear SVM and Naive Bayes the classification models with the highest predictive power. Clinical Relevance- The current study establishes a methodology to classify schizophrenia disease based on quantitative biomarkers using MR and PET images. This tool could assist the psychiatrist as an additional criterion for the diagnosis evaluation.


Asunto(s)
Esquizofrenia , Teorema de Bayes , Biomarcadores , Humanos , Espectroscopía de Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Esquizofrenia/diagnóstico por imagen
7.
Hum Brain Mapp ; 43(6): 2026-2040, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35044722

RESUMEN

The growing demand for precise and reliable biomarkers in psychiatry is fueling research interest in the hope that identifying quantifiable indicators will improve diagnoses and treatment planning across a range of mental health conditions. The individual properties of brain networks at rest have been highlighted as a possible source for such biomarkers, with the added advantage that they are relatively straightforward to obtain. However, an important prerequisite for their consideration is their reproducibility. While the reliability of resting-state (RS) measurements has often been studied at standard field strengths, they have rarely been investigated using ultrahigh-field (UHF) magnetic resonance imaging (MRI) systems. We investigated the intersession stability of four functional MRI RS parameters-amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the spontaneous brain activity), regional homogeneity (ReHo; measure of local connectivity), and degree centrality (DC; measure of long-range connectivity)-in three RS networks, previously shown to play an important role in several psychiatric diseases-the default mode network (DMN), the central executive network (CEN), and the salience network (SN). Our investigation at individual subject space revealed a strong stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stability in fALFF. Furthermore, the internetwork connectivity between each network pair was strongly stable between CEN/SN and moderately stable between DMN/SN and DMN/SN. The high degree of reliability and reproducibility in capturing the properties of the three major RS networks by means of UHF-MRI points to its applicability as a potentially useful tool in the search for disease-relevant biomarkers.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Reproducibilidad de los Resultados
8.
Transl Psychiatry ; 12(1): 6, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013095

RESUMEN

Currently, the metabotropic glutamate receptor 5 (mGluR5) is the subject of several lines of research in the context of neurology and is of high interest as a target for positron-emission tomography (PET). Here, we assessed the feasibility of using [11C]ABP688, a specific antagonist radiotracer for an allosteric site on the mGluR5, to evaluate changes in glutamatergic neurotransmission through a mismatch-negativity (MMN) task as a part of a simultaneous and synchronized multimodal PET/MR-EEG study. We analyzed the effect of MMN by comparing the changes in nondisplaceable binding potential (BPND) prior to (baseline) and during the task in 17 healthy subjects by applying a bolus/infusion protocol. Anatomical and functional regions were analyzed. A small change in BPND was observed in anatomical regions (posterior cingulate cortex and thalamus) and in a functional network (precuneus) after the start of the task. The effect size was quantified using Kendall's W value and was 0.3. The motor cortex was used as a control region for the task and did not show any significant BPND changes. There was a significant ΔBPND between acquisition conditions. On average, the reductions in binding across the regions were - 8.6 ± 3.2% in anatomical and - 6.4 ± 0.5% in the functional network (p ≤ 0.001). Correlations between ΔBPND and EEG latency for both anatomical (p = 0.008) and functional (p = 0.022) regions were found. Exploratory analyses suggest that the MMN task played a role in the glutamatergic neurotransmission, and mGluR5 may be indirectly modulated by these changes.


Asunto(s)
Tomografía de Emisión de Positrones , Receptor del Glutamato Metabotropico 5 , Radioisótopos de Carbono , Electroencefalografía , Humanos , Oximas , Piridinas
9.
Hum Brain Mapp ; 43(7): 2148-2163, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35076125

RESUMEN

The glutamate and γ-aminobutyric acid neuroreceptor subtypes mGluR5 and GABAA are hypothesized to be involved in the development of a variety of psychiatric diseases. However, detailed information relating to their in vivo distribution is generally unavailable. Maps of such distributions could potentially aid clinical studies by providing a reference for the normal distribution of neuroreceptors and may also be useful as covariates in advanced functional magnetic resonance imaging (MR) studies. In this study, we propose a comprehensive processing pipeline for the construction of standard space, in vivo distributions of non-displaceable binding potential (BPND ), and total distribution volume (VT ) based on simultaneously acquired bolus-infusion positron emission tomography (PET) and MR data. The pipeline was applied to [11 C]ABP688-PET/MR (13 healthy male non-smokers, 26.6 ± 7.0 years) and [11 C]Flumazenil-PET/MR (10 healthy males, 25.8 ± 3.0 years) data. Activity concentration templates, as well as VT and BPND atlases of mGluR5 and GABAA , were generated from these data. The maps were validated by assessing the percent error δ from warped space to native space in a selection of brain regions. We verified that the average δABP  = 3.0 ± 1.0% and δFMZ  = 3.8 ± 1.4% were lower than the expected variabilities σ of the tracers (σABP  = 4.0%-16.0%, σFMZ  = 3.9%-9.5%). An evaluation of PET-to-PET registrations based on the new maps showed higher registration accuracy compared to registrations based on the commonly used [15 O]H2 O-template distributed with SPM12. Thus, we conclude that the resulting maps can be used for further research and the proposed pipeline is a viable tool for the construction of standardized PET data distributions.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores de GABA-A , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones/métodos , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Transl Psychiatry ; 12(1): 36, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082273

RESUMEN

Given the huge symptom diversity and complexity of mental disorders, an individual approach is the most promising avenue for clinical transfer and the establishment of personalized psychiatry. However, due to technical limitations, knowledge about the neurobiological basis of mental illnesses has, to date, mainly been based on findings resulting from evaluations of average data from certain diagnostic groups. We postulate that this could change substantially through the use of the emerging ultra-high-field MRI (UHF-MRI) technology. The main advantages of UHF-MRI include high signal-to-noise ratio, resulting in higher spatial resolution and contrast and enabling individual examinations of single subjects. Thus, we used this technology to assess changes in the properties of resting-state networks over the course of therapy in a naturalistic study of two depressed patients. Significant changes in several network property measures were found in regions corresponding to prior knowledge from group-level studies. Moreover, relevant parameters were already significantly divergent in both patients at baseline. In summary, we demonstrate the feasibility of UHF-MRI for capturing individual neurobiological correlates of mental diseases. These could serve as a tool for therapy monitoring and pave the way for a truly individualized and predictive clinical approach in psychiatric care.


Asunto(s)
Psiquiatría , Trastornos Psicóticos , Humanos , Imagen por Resonancia Magnética , Salud Mental , Neuroimagen
11.
PLoS One ; 16(11): e0246709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34735449

RESUMEN

The default mode network (DMN), the salience network (SN), and the central executive network (CEN) are considered as the core resting-state brain networks (RSN) due to their involvement in a wide range of cognitive tasks. Despite the large body of knowledge related to their regional spontaneous activity (RSA) and functional connectivity (FC) of these networks, less is known about the dynamics of the task-associated modulation on these parameters and the task-induced interaction between these three networks. We have investigated the effects of the visual-oddball paradigm on three fMRI measures (amplitude of low-frequency fluctuations for RSA, regional homogeneity for local FC, and degree centrality for global FC) in these three core RSN. A rest-task-rest paradigm was used and the RSNs were identified using independent component analysis (ICA) on the resting-state data. The observed patterns of change differed noticeably between the networks and were tightly associated with the task-related brain activity and the distinct involvement of the networks in the performance of the single subtasks. Furthermore, the inter-network analysis showed an increased synchronization of CEN with the DMN and the SN immediately after the task, but not between the DMN and SN. Higher pre-task inter-network synchronization between the DMN and the CEN was associated with shorter reaction times and thus better performance. Our results provide some additional insights into the dynamics within and between the triple RSN. Further investigations are required in order to understand better their functional importance and interplay.


Asunto(s)
Corteza Cerebral , Cognición/fisiología , Conectoma , Imagen por Resonancia Magnética , Vías Nerviosas , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Femenino , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología
12.
Transl Psychiatry ; 11(1): 60, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462192

RESUMEN

The symbiosis of neuronal activities and glucose energy metabolism is reflected in the generation of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) signals. However, their association with the balance between neuronal excitation and inhibition (E/I-B), which is closely related to the activities of glutamate and γ-aminobutyric acid (GABA) and the receptor availability (RA) of GABAA and mGluR5, remains unexplored. This research investigates these associations during the resting state (RS) condition using simultaneously recorded PET/MR/EEG (trimodal) data. The trimodal data were acquired from three studies using different radio-tracers such as, [11C]ABP688 (ABP) (N = 9), [11C]Flumazenil (FMZ) (N = 10) and 2-[18F]fluoro-2-deoxy-D-glucose (FDG) (N = 10) targeted to study the mGluR5, GABAA receptors and glucose metabolism respectively. Glucose metabolism and neuroreceptor binding availability (non-displaceable binding potential (BPND)) of GABAA and mGluR5 were found to be significantly higher and closely linked within core resting-state networks (RSNs). The neuronal generators of EEG microstates and the fMRI measures were most tightly associated with the BPND of GABAA relative to mGluR5 BPND and the glucose metabolism, emphasising a predominance of inhibitory processes within in the core RSNs at rest. Changes in the neuroreceptors leading to an altered coupling with glucose metabolism may render the RSNs vulnerable to psychiatric conditions. The paradigm employed here will likely help identify the precise neurobiological mechanisms behind these alterations in fMRI functional connectivity and EEG oscillations, potentially benefitting individualised healthcare treatment measures.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Electroencefalografía , Tomografía de Emisión de Positrones
13.
Hum Brain Mapp ; 41(10): 2762-2781, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32150317

RESUMEN

Consistent findings postulate disturbed glutamatergic function (more specifically a hypofunction of the ionotropic NMDA receptors) as an important pathophysiologic mechanism in schizophrenia. However, the role of the metabotropic glutamatergic receptors type 5 (mGluR5) in this disease remains unclear. In this study, we investigated their significance (using [11 C]ABP688) for psychopathology and cognition in male patients with chronic schizophrenia and healthy controls. In the patient group, lower mGluR5 binding potential (BPND ) values in the left temporal cortex and caudate were associated with higher general symptom levels (negative and depressive symptoms), lower levels of global functioning and worse cognitive performance. At the same time, in both groups, mGluR5 BPND were significantly lower in smokers (F[27,1] = 15.500; p = .001), but without significant differences between the groups. Our findings provide support for the concept that the impaired function of mGluR5 underlies the symptoms of schizophrenia. They further supply a new perspective on the complex relationship between tobacco addiction and schizophrenia by identifying glutamatergic neurotransmission-in particularly mGluR5-as a possible connection to a shared vulnerability.


Asunto(s)
Núcleo Caudado , Disfunción Cognitiva , Receptor del Glutamato Metabotropico 5/metabolismo , Esquizofrenia , Lóbulo Temporal , Adulto , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Núcleo Caudado/fisiopatología , Enfermedad Crónica , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Oximas/farmacocinética , Tomografía de Emisión de Positrones , Piridinas/farmacocinética , Esquizofrenia/complicaciones , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Fumar/metabolismo , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/metabolismo , Lóbulo Temporal/fisiopatología
14.
Neuroimage Clin ; 24: 101998, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31518769

RESUMEN

Tourette Syndrome (TS) is a neuropsychiatric disorder characterized by the presence of motor and vocal tics. Major pathophysiological theories posit a dysfunction of the cortico-striato-thalamo-cortical circuits as being a representative hallmark of the disease. Recent evidence suggests a more widespread dysfunction of brain networks in TS including the cerebellum and going even beyond classic motor pathways. In order to characterize brain network dysfunction in TS, in this study we investigated functional and effective-like connectivity as well as topological changes of basal ganglia-thalamo-cortical and cortico-cerebellar brain networks. We collected resting-state fMRI data from 28 TS patients (age: 32 ±â€¯11 years) and 28 age-matched, healthy controls (age: 31 ±â€¯9 years). Region of interest based (ROI-ROI) bivariate correlation and ROI-ROI bivariate regression were employed as measures of functional and effective-like connectivity, respectively. Graph theoretical measures of centrality (degree, cost, betweenness centrality), functional segregation (clustering coefficient, local efficiency) and functional integration (average path length, global efficiency) were used to assess topological brain network changes. In this study, TS patients exhibited increased basal ganglia-cortical and thalamo-cortical connectivity, reduced cortico-cerebellar connectivity, and an increase in parallel communication through the basal ganglia, thalamus and cerebellum (increased global efficiency). Additionally, we observed a reduction in serial information transfer (reduction in average path length) within the default mode and the salience network. In summary, our findings show that TS is characterized by increased connectivity and functional integration of multiple basal ganglia-thalamo-cortical circuits, suggesting a predominance of excitatory neurotransmission and a lack of brain maturation. Moreover, topological changes of cortico-cerebellar and brain networks involved in interoception may be underestimated neural correlates of tics and the crucial premonitory urge feeling.


Asunto(s)
Ganglios Basales/fisiopatología , Cerebelo/fisiopatología , Corteza Cerebral/fisiopatología , Conectoma/métodos , Red Nerviosa/fisiopatología , Tálamo/fisiopatología , Síndrome de Tourette/fisiopatología , Adulto , Ganglios Basales/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Síndrome de Tourette/diagnóstico por imagen , Adulto Joven
15.
Psychiatry Res Neuroimaging ; 284: 1-8, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30605823

RESUMEN

Converging evidences from different lines of research suggest abnormalities in functional brain connectivity in schizophrenia. While positively correlated brain networks have been well researched, anticorrelated functional connectivity remains under explored. Hence, in this study we examined (1) the resting-state anticorrelated networks in schizophrenia, and (2) the accuracy of support vector machines (SVMs) in differentiating healthy individuals from schizophrenia patients using these anticorrelated networks. The sample consisted of 56 patients with DSM-IV schizophrenia and 56 healthy controls. We computed functional connectivity matrices and used Anticorrelation after Mean of Antilog method (AMA) to select predominantly anticorrelated networks. The basal ganglia, thalamus, lingual gyrus, and cerebellar vermis showed significantly different, Type A (decreased anticorrelation) connections. The medial temporal lobe and posterior cingulate gyri showed significantly different, Type B (increased anticorrelation) connections. Use of SVM on AMA networks showed moderate accuracy in differentiating schizophrenia and healthy controls. Our results suggest that anticorrelated networks between the sub-cortical and cortical areas are abnormal in schizophrenia and this has potential to be a differential biomarker. These preliminary findings, if replicated in future studies with larger number of patients, and advanced machine learning techniques could have potential clinical applications.


Asunto(s)
Aprendizaje Automático , Vías Nerviosas/fisiopatología , Descanso/psicología , Esquizofrenia/diagnóstico , Máquina de Vectores de Soporte , Adulto , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Estudios de Casos y Controles , Femenino , Giro del Cíngulo/fisiopatología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Lóbulo Temporal/fisiopatología , Tálamo/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...