Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Expert Opin Drug Metab Toxicol ; 19(9): 635-652, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37728555

RESUMEN

INTRODUCTION: Cisplatin is a very effective chemotherapeutic agent against a variety of solid tumors. Unfortunately, cisplatin causes permanent sensorineural hearing loss in at least two-thirds of patients treated. There are no FDA approved drugs to prevent this serious side effect. AREAS COVERED: This paper reviews various natural products that ameliorate cisplatin ototoxicity. These compounds are strong antioxidants and anti-inflammatory agents. This review includes mostly preclinical studies but also discusses a few small clinical trials with natural products to minimize hearing loss from cisplatin chemotherapy in patients. The interactions of natural products with cisplatin in tumor-bearing animal models are highlighted. A number of natural products did not interfere with cisplatin anti-tumor efficacy and some agents actually potentiated cisplatin anti-tumor activity. EXPERT OPINION: There are a number of natural products or their derivatives that show excellent protection against cisplatin ototoxicity in preclinical studies. There is a need to insure uniform standards for purity of drugs derived from natural sources and to ensure adequate pharmacokinetics and safety of these products. Natural products that protect against cisplatin ototoxicity and augment cisplatin's anti-tumor effects in multiple studies of tumor-bearing animals are most promising for advancement to clinical trials. The most promising natural products include honokiol, sulforaphane, and thymoquinone.

2.
Front Immunol ; 14: 1125948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063917

RESUMEN

Cisplatin is chemotherapy used for solid tumor treatment like lung, bladder, head and neck, ovarian and testicular cancers. However, cisplatin-induced ototoxicity limits the utility of this agent in cancer patients, especially when dose escalations are needed. Ototoxicity is associated with cochlear cell death through DNA damage, the generation of reactive oxygen species (ROS) and the consequent activation of caspase, glutamate excitotoxicity, inflammation, apoptosis and/or necrosis. Previous studies have demonstrated a role of CXC chemokines in cisplatin ototoxicity. In this study, we investigated the role of CXCL1, a cytokine which increased in the serum and cochlea by 24 h following cisplatin administration. Adult male Wistar rats treated with cisplatin demonstrated significant hearing loss, assessed by auditory brainstem responses (ABRs), hair cell loss and loss of ribbon synapse. Immunohistochemical studies evaluated the levels of CXCL1 along with increased presence of CD68 and CD45-positive immune cells in cochlea. Increases in CXCL1 was time-dependent in the spiral ganglion neurons and organ of Corti and was associated with progressive increases in CD45, CD68 and IBA1-positive immune cells. Trans-tympanic administration of SB225002, a chemical inhibitor of CXCR2 (receptor target for CXCL1) reduced immune cell migration, protected against cisplatin-induced hearing loss and preserved hair cell integrity. We show that SB225002 reduced the expression of CXCL1, NOX3, iNOS, TNF-α, IL-6 and COX-2. Similarly, knockdown of CXCR2 by trans-tympanic administration of CXCR2 siRNA protected against hearing loss and loss of outer hair cells and reduced ribbon synapses. In addition, SB225002 reduced the expression of inflammatory mediators induced by cisplatin. These results implicate the CXCL1 chemokine as an early player in cisplatin ototoxicity, possibly by initiating the immune cascade, and indicate that CXCR2 is a relevant target for treating cisplatin ototoxicity.


Asunto(s)
Pérdida Auditiva , Ototoxicidad , Ratas , Animales , Masculino , Cisplatino/efectos adversos , Quimiocina CXCL1/genética , Ototoxicidad/tratamiento farmacológico , Ototoxicidad/etiología , Ratas Wistar , NADPH Oxidasas/metabolismo , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/metabolismo
3.
Antioxid Redox Signal ; 36(16-18): 1158-1170, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34465184

RESUMEN

Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.


Asunto(s)
Pérdida Auditiva , Ototoxicidad , Canales de Potencial de Receptor Transitorio , Aminoglicósidos/efectos adversos , Animales , Capsaicina/efectos adversos , Cisplatino/efectos adversos , Pérdida Auditiva/metabolismo , Inflamación/metabolismo , Mamíferos/metabolismo
4.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34943021

RESUMEN

Hearing loss is a significant health problem that can result from a variety of exogenous insults that generate oxidative stress and inflammation. This can produce cellular damage and impairment of hearing. Radiation damage, ageing, damage produced by cochlear implantation, acoustic trauma and ototoxic drug exposure can all generate reactive oxygen species in the inner ear with loss of sensory cells and hearing loss. Cisplatin ototoxicity is one of the major causes of hearing loss in children and adults. This review will address cisplatin ototoxicity. It includes discussion of the mechanisms associated with cisplatin-induced hearing loss including uptake pathways for cisplatin entry, oxidative stress due to overpowering antioxidant defense mechanisms, and the recently described toxic pathways that are activated by cisplatin, including necroptosis and ferroptosis. The cochlea contains G-protein coupled receptors that can be activated to provide protection. These include adenosine A1 receptors, cannabinoid 2 receptors (CB2) and the Sphingosine 1-Phosphate Receptor 2 (S1PR2). A variety of heat shock proteins (HSPs) can be up-regulated in the cochlea. The use of exosomes offers a novel method of delivery of HSPs to provide protection. A reversible MET channel blocker that can be administered orally may block cisplatin uptake into the cochlear cells. Several protective agents in preclinical studies have been shown to not interfere with cisplatin efficacy. Statins have shown efficacy in reducing cisplatin ototoxicity without compromising patient response to treatment. Additional clinical trials could provide exciting findings in the prevention of cisplatin ototoxicity.

5.
Sci Rep ; 11(1): 8116, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854102

RESUMEN

Regulators of G protein signaling (RGS) accelerate the GTPase activity of G proteins to enable rapid termination of the signals triggered by G protein-coupled receptors (GPCRs). Activation of several GPCRs, including cannabinoid receptor 2 (CB2R) and adenosine A1 receptor (A1AR), protects against noise and drug-induced ototoxicity. One such drug, cisplatin, an anticancer agent used to treat various solid tumors, produces permanent hearing loss in experimental animals and in a high percentage of cancer patients who undergo treatments. In this study we show that cisplatin induces the expression of the RGS17 gene and increases the levels of RGS17 protein which contributes to a significant proportion of the hearing loss. Knockdown of RGS17 suppressed cisplatin-induced hearing loss in male Wistar rats, while overexpression of RGS17 alone produced hearing loss in vivo. Furthermore, RGS17 and CB2R negatively regulate the expression of each other. These data suggest that RGS17 mediates cisplatin ototoxicity by uncoupling cytoprotective GPCRs from their normal G protein interactions, thereby mitigating the otoprotective contributions of endogenous ligands of these receptors. Thus, RGS17 represents a novel mediator of cisplatin ototoxicity and a potential therapeutic target for treating hearing loss.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Pérdida Auditiva/etiología , Proteínas RGS/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Cóclea/citología , Cóclea/metabolismo , Expresión Génica/efectos de los fármacos , Pérdida Auditiva/diagnóstico , Masculino , Neoplasias/tratamiento farmacológico , Proteínas RGS/antagonistas & inhibidores , Proteínas RGS/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Front Neurol ; 12: 652674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767665

RESUMEN

It is well-known that aminoglycoside antibiotics can cause significant hearing loss and vestibular deficits that have been described in animal studies and in clinical reports. The purpose of this review is to summarize relevant preclinical and clinical publications that discuss the ototoxicity of non-aminoglycoside antibiotics. The major classes of antibiotics other than aminoglycosides that have been associated with hearing loss in animal studies and in patients are discussed in this report. These antibiotics include: capreomycin, a polypeptide antibiotic that has been used to treat patients with drug-resistant tuberculosis, particularly in developing nations; the macrolides, including erythromycin, azithromycin and clarithromycin; and vancomycin. These antibiotics have been associated with ototoxicity, particularly in neonates. It is critical to be aware of the ototoxic potential of these antibiotics since so much attention has been given to the ototoxicity of aminoglycoside antibiotics in the literature.

7.
Mol Neurobiol ; 58(5): 2019-2029, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411315

RESUMEN

Cisplatin, a potent chemotherapeutic drug, induces ototoxicity, which limits its clinical utility. Cisplatin-induced oxidative stress plays a causal role in cochlear apoptosis while the consequent nitrative stress leads to the nitration of LIM domain only 4 (LMO4), a transcriptional regulator, and decreases its cochlear expression levels. Here, we show a direct link between cochlear LMO4 and cisplatin-induced hearing loss by employing a Lmo4 conditional knockout mouse model (Lmo4lox/lox; Gfi1Cre/+). Hair cell-specific deletion of Lmo4 did not alter cochlear morphology or affect hearing thresholds and otoacoustic emissions, in the absence of apoptotic stimuli. Cisplatin treatment significantly elevated the auditory brainstem response thresholds of conditional knockouts, across all frequencies. Moreover, deletion of Lmo4 compromised the activation of STAT3, a downstream target that regulates anti-apoptotic machinery. Immunostaining indicated that the expression of phosphorylated STAT3 was significantly decreased while the expression of activated caspase 3 was significantly increased in Lmo4 deficient hair cells, post-cisplatin treatment. These findings suggest an otoprotective role of LMO4 as cisplatin-induced decrease in cochlear LMO4 could compromise the LMO4/STAT3 cellular defense mechanism to induce ototoxicity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/efectos de los fármacos , Cisplatino/efectos adversos , Cóclea/patología , Pérdida Auditiva/inducido químicamente , Proteínas con Dominio LIM/genética , Animales , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Predisposición Genética a la Enfermedad , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Ratones , Ratones Noqueados
8.
Expert Opin Drug Metab Toxicol ; 16(10): 965-982, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32757852

RESUMEN

INTRODUCTION: Cisplatin is a highly effective chemotherapeutic agent against a variety of solid tumors in adults and in children. Unfortunately, a large percentage of patients suffer permanent sensorineural hearing loss. Up to 60% of children and at least 50% of adults suffer this complication that seriously compromises their quality of life. Hearing loss is due to damage to the sensory cells in the inner ear. The mechanisms of cochlear damage are still being investigated. However, it appears that inner ear damage is triggered by reactive oxygen species (ROS) formation and inflammation 34. AREAS COVERED: We discuss a number of potential therapeutic targets that can be addressed to provide hearing protection. These strategies include enhancing the endogenous antioxidant pathways, heat shock proteins, G protein coupled receptors and counteracting ROS and reactive nitrogen species, and blocking pathways that produce inflammation, including TRPV1 and STAT1 36. EXPERT OPINION: Numerous potential protective agents show promise in animal models by systemic or local administration. However, clinical trials have not shown much efficacy to date with the exception of sodium thiosulfate. There is an urgent need to discover safe and effective protective agents that do not interfere with the efficacy of cisplatin against tumors yet preserve hearing 151.


Asunto(s)
Antineoplásicos/efectos adversos , Ototoxicidad/prevención & control , Compuestos de Platino/efectos adversos , Adulto , Animales , Antineoplásicos/administración & dosificación , Niño , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/prevención & control , Humanos , Neoplasias/tratamiento farmacológico , Ototoxicidad/etiología , Compuestos de Platino/administración & dosificación , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/efectos adversos , Sustancias Protectoras/farmacología , Calidad de Vida , Especies Reactivas de Oxígeno/metabolismo
9.
Front Cell Neurosci ; 13: 444, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632242

RESUMEN

Noise trauma is the most common cause of hearing loss in adults. There are no known FDA approved drugs for prevention or rescue of noise-induced hearing loss (NIHL). In this study, we provide evidence that implicates stress signaling molecules (TRPV1, NOX3, and TNF-α) in NIHL. Furthermore, we provide evidence that inhibiting any one of these moieties can prevent and treat NIHL when administered within a window period. Hearing loss induced by loud noise is associated with the generation of reactive oxygen species (ROS), increased calcium (Ca2+) in the endolymph and hair cells, and increased inflammation in the cochlea. Increased (Ca2+) and ROS activity persists for several days after traumatic noise exposure (NE). Chronic increases in (Ca2+) and ROS have been shown to increase inflammation and apoptosis in various tissue. However, the precise role of Ca2+ up-regulation and the resulting inflammation causing a positive feedback loop in the noise-exposed cochlea to generate sustained toxic amounts of Ca2+ are unknown. Here we show cochlear TRPV1 dysregulation is a key step in NIHL, and that inflammatory TNF-α cytokine-mediated potentiation of TRPV1 induced Ca2+ entry is an essential mechanism of NIHL. In the Wistar rat model, noise produces an acute (within 48 h) and a chronic (within 21 days) increase in cochlear gene expression of TRPV1, NADPH oxidase 3 (NOX3) and pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX2). Additionally, we also show that H2O2 (100 µM) produces a robust increase in Ca2+ entry in cell cultures which is enhanced by TNF-α via the TRPV1 channel and which involves ERK1/2 phosphorylation. Mitigation of NIHL could be achieved by using capsaicin (TRPV1 agonist that rapidly desensitizes TRPV1. This mechanism is used in the treatment of pain in diabetic peripheral neuropathy) pretreatment or by inhibition of TNF-α with Etanercept (ETA), administered up to 7 days prior to NE or within 24 h of noise. Our results demonstrate the importance of the synergistic interaction between TNF-α and TRPV1 in the cochlea and suggest that these are important therapeutic targets for treating NIHL.

10.
Front Cell Neurosci ; 13: 300, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338024

RESUMEN

Systemic delivery of therapeutics for targeting the cochlea to prevent or treat hearing loss is challenging. Systemic drugs have to cross the blood-labyrinth barrier (BLB). BLB can significantly prevent effective penetration of drugs in appropriate concentrations to protect against hearing loss caused by inflammation, ototoxic drugs, or acoustic trauma. This obstacle may be obviated by local administration of protective agents. This route can deliver higher concentration of drug compared to systemic application and preclude systemic side effects. Protective agents have been administered by intra-tympanic injection in numerous preclinical studies. Drugs such as steroids, etanercept, D and L-methionine, pifithrin-alpha, adenosine agonists, melatonin, kenpaullone (a cyclin-dependent kinase 2 (CDK2) inhibitor) have been reported to show efficacy against cisplatin ototoxicity in animal models. Several siRNAs have been shown to ameliorate cisplatin ototoxicity when administered by intra-tympanic injection. The application of corticosteroids and a number of other drugs with adjuvants appears to enhance efficacy. Administration of siRNAs to knock down AMPK kinase, liver kinase B1 (LKB1) or G9a in the cochlea have been found to ameliorate noise-induced hearing loss. The local administration of these compounds appears to be effective in protecting the cochlea against damage from cisplatin or noise trauma. Furthermore the intra-tympanic route yields maximum protection in the basal turn of the cochlea which is most vulnerable to cisplatin ototoxicity and noise trauma. There appears to be very little transfer of these agents to the systemic circulation. This would avoid potential side effects including interference with anti-tumor efficacy of cisplatin. Nanotechnology offers strategies to effectively deliver protective agents to the cochlea. This review summarizes the pharmacology of local drug delivery by intra-tympanic injection to prevent hearing loss caused by cisplatin and noise exposure in animals. Future refinements in local protective agents provide exciting prospects for amelioration of hearing loss resulting from cisplatin or noise exposure.

11.
Sci Rep ; 9(1): 9571, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267026

RESUMEN

Adenosine A1 receptors (A1AR) are well characterized for their role in cytoprotection. Previous studies have demonstrated the presence of these receptors in the cochlea where their activation were shown to suppress cisplatin-induced inflammatory response and the resulting ototoxicity. Inhibition of A1AR by caffeine, a widely consumed psychoactive substance, could antagonize the endogenous protective role of these receptors in cochlea and potentiate cisplatin-induced hearing loss. This hypothesis was tested in a rat model of cisplatin ototoxicity following oral administration of caffeine. We report here that single-dose administration of caffeine exacerbates cisplatin-induced hearing loss without increasing the damage to outer hair cells (OHCs), but increased synaptopathy and inflammation in the cochlea. These effects of caffeine were mediated by its blockade of A1AR, as co-administration of R-PIA, an A1AR agonist, reversed the detrimental actions of caffeine and cisplatin on hearing loss. Multiple doses of caffeine exacerbated cisplatin ototoxicity which was associated with damage to OHCs and cochlear synaptopathy. These findings highlight a possible drug-drug interaction between caffeine and cisplatin for ototoxicity and suggest that caffeine consumption should be cautioned in cancer patients treated with a chemotherapeutic regimen containing cisplatin.


Asunto(s)
Antineoplásicos/efectos adversos , Cafeína/administración & dosificación , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cisplatino/efectos adversos , Pérdida Auditiva/etiología , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Cafeína/efectos adversos , Estimulantes del Sistema Nervioso Central/efectos adversos , Cóclea/efectos de los fármacos , Sinergismo Farmacológico , Técnica del Anticuerpo Fluorescente , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Ratas , Potenciales Sinápticos/efectos de los fármacos
12.
Semin Hear ; 40(2): 197-204, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31036996

RESUMEN

Cisplatin is a highly effective antineoplastic agent used to treat solid tumors. Unfortunately, the administration of this drug leads to significant side effects, including ototoxicity, nephrotoxicity, and neurotoxicity. This review addresses the mechanisms of cisplatin-induced ototoxicity and various strategies tested to prevent this distressing adverse effect. The molecular pathways underlying cisplatin ototoxicity are still being investigated. Cisplatin enters targeted cells in the cochlea through the action of several transporters. Once it enters the cochlea, cisplatin is retained for months to years. It can cause DNA damage, inhibit protein synthesis, and generate reactive oxygen species that can lead to inflammation and apoptosis of outer hair cells, resulting in permanent hearing loss. Strategies to prevent cisplatin ototoxicity have utilized antioxidants, transport inhibitors, G-protein receptor agonists, and anti-inflammatory agents. There are no FDA-approved drugs to prevent cisplatin ototoxicity. It is critical that potential protective agents do not interfere with the antitumor efficacy of cisplatin.

13.
Sci Rep ; 9(1): 4131, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858408

RESUMEN

Capsaicin, the spicy component of hot chili peppers activates the TRPV1 pain receptors, and causes rapid desensitization. Capsaicin also ameliorates cisplatin-induced nephrotoxicity. Cisplatin, a commonly used anti-neoplastic agent for solid tumors causes significant hearing loss, nephrotoxicity and peripheral neuropathy. Upregulation of cochlear TRPV1 expression is related to cisplatin-mediated ototoxicity. Here we report that direct TRPV1 activation by localized trans-tympanic (TT) or oral administration of capsaicin (TRPV1 agonist) prevents cisplatin ototoxicity by sustained increased activation of pro-survival transcription factor signal transducer and activator of transcription (STAT3) in the Wistar rat. Cisplatin treatment produced prolonged activation of pro-apoptotic Ser727 p-STAT1 and suppressed Tyr705-p-STAT3 for up to 72 h in the rat cochlea. Our data indicate that capsaicin causes a transient STAT1 activation via TRPV1 activation, responsible for the previously reported temporary threshold shift. Additionally, we found that capsaicin increased cannabinoid receptor (CB2) in the cochlea, which leads to pro-survival Tyr705-p-STAT3 activation. This tilts the delicate balance of p-STAT3/p-STAT1 towards survival. Furthermore, capsaicin mediated protection is lost when CB2 antagonist AM630 is administered prior to capsaicin treatment. In conclusion, capsaicin otoprotection appears to be mediated by activation of CB2 receptors in the cochlea which are coupled to both STAT1 and STAT3 activation.


Asunto(s)
Antineoplásicos/toxicidad , Capsaicina/farmacología , Cisplatino/toxicidad , Cóclea/metabolismo , Ototoxicidad/prevención & control , Receptor Cannabinoide CB2/metabolismo , Fármacos del Sistema Sensorial/farmacología , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Capsaicina/uso terapéutico , Línea Celular , Cóclea/efectos de los fármacos , Indoles/farmacología , Masculino , Ratones , Ratones SCID , Ototoxicidad/tratamiento farmacológico , Ratas , Ratas Wistar , Receptor Cannabinoide CB2/antagonistas & inhibidores , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Fármacos del Sistema Sensorial/uso terapéutico , Canales Catiónicos TRPV/metabolismo
14.
Front Cell Neurosci ; 12: 271, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186120

RESUMEN

Previous studies have demonstrated the presence of cannabinoid 2 receptor (CB2R) in the rat cochlea which was induced by cisplatin. In an organ of Corti-derived cell culture model, it was also shown that an agonist of the CB2R protected these cells against cisplatin-induced apoptosis. In the current study, we determined the distribution of CB2R in the mouse and rat cochleae and examined whether these receptors provide protection against cisplatin-induced hearing loss. In a knock-in mouse model expressing the CB2R tagged with green fluorescent protein, we show distribution of CB2R in the organ of Corti, stria vascularis, spiral ligament and spiral ganglion cells. A similar distribution of CB2R was observed in the rat cochlea using a polyclonal antibody against CB2R. Trans-tympanic administration of (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH015), a selective agonist of the CB2R, protected against cisplatin-induced hearing loss which was reversed by blockade of this receptor with 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630), an antagonist of CB2R. JWH015 also reduced the loss of outer hair cells (OHCs) in the organ of Corti, loss of inner hair cell (IHC) ribbon synapses and loss of Na+/K+-ATPase immunoreactivity in the stria vascularis. Administration of AM630 alone produced significant hearing loss (measured by auditory brainstem responses) which was not associated with loss of OHCs, but led to reductions in the levels of IHC ribbon synapses and strial Na+/K+-ATPase immunoreactivity. Furthermore, knock-down of CB2R by trans-tympanic administration of siRNA sensitized the cochlea to cisplatin-induced hearing loss at the low and middle frequencies. Hearing loss induced by cisplatin and AM630 in the rat was associated with increased expression of genes for oxidative stress and inflammatory proteins in the rat cochlea. In vitro studies indicate that JWH015 did not alter cisplatin-induced killing of cancer cells suggesting this agent could be safely used during cisplatin chemotherapy. These data unmask a protective role of the cochlear endocannabinoid/CB2R system which appears tonically active under normal conditions to preserve normal hearing. However, an exogenous agonist is needed to boost the activity of endocannabinoid/CB2R system for protection against a more traumatic cochlear insult, as observed with cisplatin administration.

15.
J Vis Exp ; (133)2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29608150

RESUMEN

The systemic administration of protective agents to treat drug-induced ototoxicity is limited by the possibility that these protective agents could interfere with the chemotherapeutic efficacy of the primary drugs. This is especially true for the drug cisplatin, whose anticancer actions are attenuated by antioxidants which provide adequate protection against hearing loss. Other current or potential otoprotective agents could pose a similar problem, if administered systemically. The application of various biologicals or protective agents directly to the cochlea would allow for high levels of these agents locally with limited systemic side effects. In this report, we demonstrate a trans-tympanic method of delivery of various drugs or biological reagents to the cochlea, which should enhance basic science research on the cochlea and provide a simple way of directing the use of otoprotective agents in the clinics. This report details a method of trans-tympanic drug delivery and provides examples of how this technique has been used successfully in experimental animals to treat cisplatin ototoxicity.


Asunto(s)
Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Cóclea/efectos de los fármacos , Pérdida Auditiva/prevención & control , Sustancias Protectoras/administración & dosificación , Membrana Timpánica/efectos de los fármacos , Animales , Sistemas de Liberación de Medicamentos , Interacciones Farmacológicas , Pérdida Auditiva/inducido químicamente , Masculino , Ratas , Ratas Wistar
16.
Front Cell Neurosci ; 11: 338, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163050

RESUMEN

Evidence of significant hearing loss during the early days of use of cisplatin as a chemotherapeutic agent in cancer patients has stimulated research into the causes and treatment of this side effect. It has generally been accepted that hearing loss is produced by excessive generation of reactive oxygen species (ROS) in cell of the cochlea, which led to the development of various antioxidants as otoprotective agents. Later studies show that ROS could stimulate cochlear inflammation, suggesting the use of anti-inflammatory agents for treatment of hearing loss. In this respect, G-protein coupled receptors, such as adenosine A1 receptor and cannabinoid 2 receptors, have shown efficacy in the treatment of hearing loss in experimental animals by increasing ROS scavenging, suppressing ROS generation, or by decreasing inflammation. Inflammation could be triggered by activation of transient receptor potential vanilloid 1 (TRPV1) channels in the cochlea and possibly other TRP channels. Targeting TRPV1 for knockdown has also been shown to be a useful strategy for ensuring otoprotection. Cisplatin entry into cochlear hair cells is mediated by various transporters, inhibitors of which have been shown to be effective for treating hearing loss. Finally, cisplatin-induced DNA damage and activation of the apoptotic process could be targeted for cisplatin-induced hearing loss. This review focuses on recent development in our understanding of the mechanisms underlying cisplatin-induced hearing loss and provides examples of how drug therapies have been formulated based on these mechanisms.

17.
Cell Death Dis ; 8(7): e2921, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703809

RESUMEN

Cisplatin-induced ototoxicity is one of the major factors limiting cisplatin chemotherapy. Ototoxicity results from damage to outer hair cells (OHCs) and other regions of the cochlea. At the cellular level, cisplatin increases reactive oxygen species (ROS) leading to cochlear inflammation and apoptosis. Thus, ideal otoprotective drugs should target oxidative stress and inflammatory mechanisms without interfering with cisplatin's chemotherapeutic efficacy. In this study, we show that epigallocatechin-3-gallate (EGCG) is a prototypic agent exhibiting these properties of an effect otoprotective agent. Rats administered oral EGCG demonstrate reduced cisplatin-induced hearing loss, reduced loss of OHCs in the basal region of the cochlea and reduced oxidative stress and apoptotic markers. EGCG also protected against the loss of ribbon synapses associated with inner hair cells and Na+/K+ ATPase α1 in the stria vascularis and spiral ligament. In vitro studies showed that EGCG reduced cisplatin-induced ROS generation and ERK1/2 and signal transducer and activator of transcription-1 (STAT1) activity, but preserved the activity of STAT3 and Bcl-xL. The increase in STAT3/STAT1 ratio appears critical for mediating its otoprotection. EGCG did not alter cisplatin-induced apoptosis of human-derived cancer cells or cisplatin antitumor efficacy in a xenograft tumor model in mice because of its inability to rescue the downregulation of STAT3 in these cells. These data suggest that EGCG is an ideal otoprotective agent for treating cisplatin-induced hearing loss without compromising its antitumor efficacy.


Asunto(s)
Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Catequina/análogos & derivados , Cisplatino/toxicidad , Cóclea/efectos de los fármacos , Animales , Catequina/farmacología , Línea Celular , Cóclea/metabolismo , Cóclea/patología , Células HCT116 , Pérdida Auditiva/etiología , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Humanos , Masculino , Ratones , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología
18.
PLoS One ; 12(5): e0177198, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467474

RESUMEN

Prostate cancer (PCa) is the second leading cause of cancer deaths in men. A better understanding of the molecular basis of prostate cancer proliferation and metastasis should enable development of more effective treatments. In this study we focused on the lncRNA, prostate cancer associated transcript 29 (PCAT29), a putative tumor suppressive gene. Our data show that the expression of PCAT29 was reduced in prostate cancer tumors compared to paired perinormal prostate tissues. We also observed substantially lower levels of PCAT29 in DU145 and LNCaP cells compared to normal prostate (RWPE-1) cells. IL-6, a cytokine which is elevated in prostate tumors, reduced the expression of PCAT29 in both DU145 and LNCaP cells by activating signal transducer and activator of transcription 3 (STAT3). One downstream target of STAT3 is microRNA (miR)-21, inhibition of which enhanced basal PCAT29 expression. In addition, we show that resveratrol is a potent stimulator of PCAT29 expression under basal condition and reversed the down regulation of this lncRNA by IL-6. Furthermore, we show that knock down of PCAT29 expression by siRNA in DU145 and LNCaP cells increased cell viability while increasing PCAT29 expression with resveratrol decreased cell viability. Immunohistochemistry studies showed increased levels of STAT3 and IL-6, but low levels of programmed cell death protein 4 (PDCD4), in prostate tumor epithelial cells compared to adjacent perinormal prostate epithelial cells. These data show that the IL-6/STAT3/miR-21 pathway mediates tonic suppression of PCAT29 expression and function. Inhibition of this signaling pathway by resveratrol induces PCAT29 expression and tumor suppressor function.


Asunto(s)
Genes Supresores de Tumor/fisiología , Interleucina-6/fisiología , Neoplasias de la Próstata/metabolismo , ARN Largo no Codificante/fisiología , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , MicroARNs/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Resveratrol , Factor de Transcripción STAT3/fisiología , Transducción de Señal/fisiología
19.
J Neurosci ; 36(14): 3962-77, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053204

RESUMEN

Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways.R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT: Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R-phenylisopropyladenosine (R-PIA) and showed that it reduced cisplatin-induced inflammation and apoptosis in the rat cochlea and preserved hearing. The mechanism of protection involves suppression of the NOX3 NADPH oxidase enzyme, a major target of cisplatin-induced reactive oxygen species (ROS) generation in the cochlea. ROS initiates an inflammatory and apoptotic cascade in the cochlea by activating STAT1 transcription factor, which is attenuated byR-PIA. Therefore, trans-tympanic delivery of A1AR agonists could effectively treat cisplatin ototoxicity.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Cóclea/efectos de los fármacos , Inflamación/fisiopatología , NADPH Oxidasas/efectos de los fármacos , NADPH Oxidasas/genética , Receptor de Adenosina A1/efectos de los fármacos , Factor de Transcripción STAT1/efectos de los fármacos , Factor de Transcripción STAT1/genética , Agonistas del Receptor de Adenosina A1/administración & dosificación , Agonistas del Receptor de Adenosina A1/farmacología , Antagonistas del Receptor de Adenosina A1/administración & dosificación , Antagonistas del Receptor de Adenosina A1/farmacología , Animales , Línea Celular , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Trastornos de la Audición/inducido químicamente , Trastornos de la Audición/fisiopatología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
20.
Expert Opin Investig Drugs ; 24(2): 201-17, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25243609

RESUMEN

INTRODUCTION: Sensorineural hearing loss (HL) is becoming a global phenomenon at an alarming rate. Nearly 600 million people have been estimated to have significant HL in at least one ear. There are several different causes of sensorineural HL included in this review of new investigational drugs for HL. They are noise-induced, drug-induced, sudden sensorineural HL, presbycusis and HL due to cytomegalovirus infections. AREAS COVERED: This review presents trends in research for new investigational drugs encompassing a variety of causes of HL. The studies presented here are the latest developments either in the research laboratories or in preclinical, Phase 0, Phase I or Phase II clinical trials for drugs targeting HL. EXPERT OPINION: While it is important that prophylactic measures are developed, it is extremely crucial that rescue strategies for unexpected or unavoidable cochlear insult be established. To achieve this goal for the development of drugs for HL, innovative strategies and extensive testing are required for progress from the bench to bedside. However, although a great deal of research needs to be done to achieve the ultimate goal of protecting the ear against acquired sensorineural HL, we are likely to see exciting breakthroughs in the near future.


Asunto(s)
Diseño de Fármacos , Drogas en Investigación/uso terapéutico , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Infecciones por Citomegalovirus/complicaciones , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...