Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 240: 102652, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955325

RESUMEN

Psychotic disorders entail intricate conditions marked by disruptions in cognition, perception, emotions, and social behavior. Notably, psychotic patients who use cannabis tend to show less severe deficits in social behaviors, such as the misinterpretation of social cues and the inability to interact with others. However, the biological underpinnings of this epidemiological interaction remain unclear. Here, we used the NMDA receptor blocker phencyclidine (PCP) to induce psychotic-like states and to study the impact of adolescent cannabinoid exposure on social behavior deficits and synaptic transmission changes in hippocampal area CA2, a region known to be active during social interactions. In particular, adolescent mice underwent 7 days of subchronic treatment with the synthetic cannabinoid, WIN 55, 212-2 (WIN) followed by one injection of PCP. Using behavioral, biochemical, and electrophysiological approaches, we showed that PCP persistently reduced sociability, decreased GAD67 expression in the hippocampus, and induced GABAergic deficits in proximal inputs from CA3 and distal inputs from the entorhinal cortex (EC) to CA2. Notably, WIN exposure during adolescence specifically restores adult sociability deficits, the expression changes in GAD67, and the GABAergic impairments in the EC-CA2 circuit, but not in the CA3-CA2 circuit. Using a chemogenetic approach to target EC-CA2 projections, we demonstrated the involvement of this specific circuit on sociability deficits. Indeed, enhancing EC-CA2 transmission was sufficient to induce sociability deficits in vehicle-treated mice, but not in animals treated with WIN during adolescence, suggesting a mechanism by which adolescent cannabinoid exposure rescues sociability deficits caused by enhanced EC-CA2 activity in adult mice.

2.
Nat Commun ; 15(1): 4307, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811567

RESUMEN

G protein-coupled receptors (GPCRs) are sophisticated signaling machines able to simultaneously elicit multiple intracellular signaling pathways upon activation. Complete (in)activation of all pathways can be counterproductive for specific therapeutic applications. This is the case for the serotonin 2 A receptor (5-HT2AR), a prominent target for the treatment of schizophrenia. In this study, we elucidate the complex 5-HT2AR coupling signature in response to different signaling probes, and its physiological consequences by combining computational modeling, in vitro and in vivo experiments with human postmortem brain studies. We show how chemical modification of the endogenous agonist serotonin dramatically impacts the G protein coupling profile of the 5-HT2AR and the associated behavioral responses. Importantly, among these responses, we demonstrate that memory deficits are regulated by Gαq protein activation, whereas psychosis-related behavior is modulated through Gαi1 stimulation. These findings emphasize the complexity of GPCR pharmacology and physiology and open the path to designing improved therapeutics for the treatment of stchizophrenia.


Asunto(s)
Trastornos de la Memoria , Trastornos Psicóticos , Receptor de Serotonina 5-HT2A , Serotonina , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Células HEK293 , Trastornos de la Memoria/metabolismo , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/tratamiento farmacológico , Receptor de Serotonina 5-HT2A/metabolismo , Esquizofrenia/metabolismo , Serotonina/metabolismo , Transducción de Señal
3.
Glia ; 71(1): 60-70, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35293647

RESUMEN

In neuroscience, the explosion of innovative and advanced technical accomplishments is fundamental to understanding brain functioning. For example, the possibility to distinguish glial and neuronal activities at the synaptic level and/or the appearance of new genetic tools to specifically monitor and manipulate astroglial functions revealed that astrocytes are involved in several facets of behavioral control. In this sense, the discovery of functional presence of type-1 cannabinoid receptors in astrocytes has led to identify important behavioral responses mediated by this specific pool of cannabinoid receptors. Thus, astroglial type-1 cannabinoid receptors are in the perfect place to play a role in a complex scenario in which astrocytes sense neuronal activity, release gliotransmitters and modulate the activity of other neurons, ultimately controlling behavioral responses. In this review, we will describe the known behavioral implications of astroglial cannabinoid signaling and highlight exciting unexplored research avenues on how astroglial cannabinoid signaling could affect behavior.


Asunto(s)
Astrocitos , Cannabinoides , Astrocitos/fisiología , Neuronas/fisiología , Transducción de Señal , Receptores de Cannabinoides , Cannabinoides/farmacología
4.
Front Pharmacol ; 13: 864591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370697

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia and neurodegeneration. The actual cause of AD progression is still unknown and no curative treatment is available. Recently, findings in human samples and animal models pointed to the endocannabinoid system (ECS) as a promising therapeutic approach against AD. However, the specific mechanisms by which cannabinoid drugs induce potential beneficial effects are still undefined. For this reason, it is required a full characterization of the ECS at different time points of AD progression considering important factors such as sex or the analysis of different brain regions to improve future cannabinoid-dependent therapies in AD. Thus, the main aim of the present study is to expand our knowledge of the status of the ECS in a presymptomatic period (3 months of age) using the AD mouse model APP/PS1 mice. First, we evaluated different behavioral domains including anxiety, cognitive functions, and social interactions in male and female APP/PS1 mice at 4 months of age. Although a mild working memory impairment was observed in male APP/PS1 mice, in most of the behaviors assessed we found no differences between genotypes. At 3 months of age, we performed a characterization of the ECS in different brain regions of the APP/PS1 mice considering the sex variable. We assessed the expression of the ECS components by quantitative Real-Time Polymerase Chain Reaction in the hippocampus, prefrontal cortex, hypothalamus, olfactory bulb, and cerebellum. Interestingly, gene expression levels of the type-1 and type-2 cannabinoid receptors and the anabolic and catabolic enzymes, differed depending on the brain region and the sex analyzed. For example, CB1R expression levels decreased in both hippocampus and prefrontal cortex of male APP/PS1 mice but increased in female mice. In contrast, CB2R expression was decreased in females, whereas males tended to have higher levels. Overall, our data indicated that the ECS is already altered in APP/PS1 mice at the presymptomatic stage, suggesting that it could be an early event contributing to the pathophysiology of AD or being a potential predictive biomarker.

5.
Neuropharmacology ; 170: 108030, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32171677

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multisystemic disorder characterized by muscle weakness and wasting and by important central nervous system-related symptoms including impairments in executive functions, spatial abilities and increased anxiety and depression. The Mbnl2 gene has been implicated in several phenotypes consistent with DM1 neuropathology. In this study, we developed a tissue-specific knockout mouse model lacking the Mbnl2 gene in forebrain glutamatergic neurons to examine its specific contribution to the neurobiological perturbations related to DM1. We found that these mice exhibit long-term cognitive deficits and a depressive-like state associated with neuronal loss, increased microglia and decreased neurogenesis, specifically in the dentate gyrus (DG). Chronic treatment with the atypical antidepressant mirtazapine (3 and 10 mg/kg) for 21 days rescued these behavioral alterations, reduced inflammatory microglial overexpression, and reversed neuronal loss in the DG. We also show that mirtazapine re-established 5-HT1A and histaminergic H1 receptor gene expression in the hippocampus. Finally, metabolomics studies indicated that mirtazapine increased serotonin, noradrenaline, gamma-aminobutyric acid and adenosine production. These data suggest that loss of Mbnl2 gene in the glutamatergic neurons of hippocampus and cortex may underlie the most relevant DM1 neurobiological and behavioral features, and provide evidence that mirtazapine could be a novel potential candidate to alleviate these debilitating symptoms in DM1 patients.


Asunto(s)
Ácido Glutámico , Mirtazapina/uso terapéutico , Distrofia Miotónica/genética , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Prosencéfalo/efectos de los fármacos , Proteínas de Unión al ARN/genética , Animales , Animales Modificados Genéticamente , Drosophila , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mirtazapina/farmacología , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Prosencéfalo/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
J Psychopharmacol ; 33(9): 1170-1182, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31219369

RESUMEN

BACKGROUND: 3,4-Methylenedioxymethamphetamine (MDMA) is still one of the most consumed drugs by adolescents. Its abuse is related with cognitive impairment, which seems due to maladaptive plasticity and neural stress. In turn, new hypotheses suggest that Alzheimer's disease (AD) may be promoted by neural stressors. AIMS AND METHODS: To test if there is an increase in vulnerability to AD after chronic MDMA consumption, we investigated the effects of this drug on recognition memory and its neurotoxic and neuroplastic effects in a transgenic mouse model of presymptomatic familiar AD (APP/PS1 dE9, Tg). RESULTS: MDMA-treated animals showed recognition memory deficits, regardless of genotype, which were accompanied by changes in plasticity markers. Tg mice showed an impaired expression of Arc compared with wild-type animals, but exposure to MDMA induced an increase in the expression of this factor of the same percentage in both genotypes. However, the expression of c-fos, BDNF and p-CREB was not significantly altered by MDMA treatment in Tg mice. Although Tg mice had higher free choline levels than wild-type mice (about 123%), MDMA did not modify these levels in any case, ruling out any specific effect of this drug on the acetylcholine pathway. MDMA treatment significantly increased the presence of cortical amyloid plaques, as well as Aß40, Aß42 and secreted APPß levels in Tg mice. These plaques were accompanied by increased tau phosphorylation (S199), which does not seem to occur via the canonic pathway involving AKT, CDK5 or GSK3ß. CONCLUSIONS: The present results support previous evidences that MDMA can contribute to the amyloid cascade.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , N-Metil-3,4-metilenodioxianfetamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
Cereb Cortex ; 29(7): 2978-2997, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30060068

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting muscle and central nervous system (CNS) function. The cellular mechanisms underlying CNS alterations are poorly understood and no useful treatments exist for the neuropsychological deficits observed in DM1 patients. We investigated the progression of behavioral deficits present in male and female muscleblind-like 2 (Mbnl2) knockout (KO) mice, a rodent model of CNS alterations in DM1, and determined the biochemical and electrophysiological correlates in medial prefrontal cortex (mPFC), striatum and hippocampus (HPC). Male KO exhibited more cognitive impairment and depressive-like behavior than female KO mice. In the mPFC, KO mice showed an overexpression of proinflammatory microglia, increased transcriptional levels of Dat, Drd1, and Drd2, exacerbated dopamine levels, and abnormal neural spiking and oscillatory activities in the mPFC and HPC. Chronic treatment with methylphenidate (MPH) (1 and 3 mg/kg) reversed the behavioral deficits, reduced proinflammatory microglia in the mPFC, normalized prefrontal Dat and Drd2 gene expression, and increased Bdnf and Nrf2 mRNA levels. These findings unravel the mechanisms underlying the beneficial effects of MPH on cognitive deficits and depressive-like behaviors observed in Mbnl2 KO mice, and suggest that MPH could be a potential candidate to treat the CNS deficiencies in DM1 patients.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Disfunción Cognitiva/genética , Depresión/genética , Metilfenidato/farmacología , Microglía/efectos de los fármacos , Distrofia Miotónica , Afecto/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distrofia Miotónica/complicaciones , Distrofia Miotónica/genética , Proteínas de Unión al ARN/genética , Receptores Dopaminérgicos/efectos de los fármacos , Receptores Dopaminérgicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...