Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34350965

RESUMEN

Septin GTP-binding proteins contribute essential biological functions that range from the establishment of cell polarity to animal tissue morphogenesis. Human septins in cells form hetero-octameric septin complexes containing the ubiquitously expressed SEPT9 subunit (also known as SEPTIN9). Despite the established role of SEPT9 in mammalian development and human pathophysiology, biochemical and biophysical studies have relied on monomeric SEPT9, thus not recapitulating its native assembly into hetero-octameric complexes. We established a protocol that enabled, for the first time, the isolation of recombinant human septin octamers containing distinct SEPT9 isoforms. A combination of biochemical and biophysical assays confirmed the octameric nature of the isolated complexes in solution. Reconstitution studies showed that octamers with either a long or a short SEPT9 isoform form filament assemblies, and can directly bind and cross-link actin filaments, raising the possibility that septin-decorated actin structures in cells reflect direct actin-septin interactions. Recombinant SEPT9-containing octamers will make it possible to design cell-free assays to dissect the complex interactions of septins with cell membranes and the actin and microtubule cytoskeleton.


Asunto(s)
Citoesqueleto , Septinas , Actinas , Animales , Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Septinas/genética , Septinas/metabolismo
2.
Viruses ; 11(7)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31324000

RESUMEN

With the availability of an increasing number of 3D structures of bacteriophage components, combined with powerful in silico predictive tools, it has become possible to decipher the structural assembly and functionality of phage adhesion devices. In the current study, we examined 113 members of the 936 group of lactococcal siphophages, and identified a number of Carbohydrate Binding Modules (CBMs) in the neck passage structure and major tail protein, on top of evolved Dit proteins, as recently reported by us. The binding ability of such CBM-containing proteins was assessed through the construction of green fluorescent protein fusion proteins and subsequent binding assays. Two CBMs, one from the phage tail and another from the neck, demonstrated definite binding to their phage-specific host. Bioinformatic analysis of the structural proteins of 936 phages reveals that they incorporate binding modules which exhibit structural homology to those found in other lactococcal phage groups and beyond, indicating that phages utilize common structural "bricks" to enhance host binding capabilities. The omnipresence of CBMs in Siphophages supports their beneficial role in the infection process, as they can be combined in various ways to form appendages with different shapes and functionalities, ensuring their success in host detection in their respective ecological niches.


Asunto(s)
Bacteriófagos/química , Carbohidratos/química , Lactococcus lactis/virología , Siphoviridae/química , Proteínas de la Cola de los Virus/química , Virión/química , Bacteriófagos/genética , Biología Computacional , Interacciones Microbiota-Huesped , Modelos Moleculares , Unión Proteica , Conformación Proteica , Siphoviridae/genética , Proteínas de la Cola de los Virus/genética , Virión/genética
3.
Methods Mol Biol ; 2025: 165-190, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31267452

RESUMEN

High-throughput production (HTP) of synthetic genes is becoming an important tool to explore the biological function of the extensive genomic and meta-genomic information currently available from various sources. One such source is animal venom, which contains thousands of novel bioactive peptides with potential uses as novel therapeutics to treat a plethora of diseases as well as in environmentally benign bioinsecticide formulations. Here, we describe a HTP platform for recombinant bacterial production of oxidized disulfide-rich proteins and peptides from animal venoms. High-throughput, host-optimized, gene synthesis and subcloning, combined with robust HTP expression and purification protocols, generate a semiautomated pipeline for the accelerated production of proteins and peptides identified from genomic or transcriptomic libraries. The platform has been applied to the production of thousands of animal venom peptide toxins for the purposes of drug discovery, but has the power to be universally applicable for high-level production of various and diverse target proteins in soluble form. This chapter details the HTP protocol for gene synthesis and production, which supported high levels of peptide expression in the E. coli periplasm using a cleavable DsbC fusion. Finally, target proteins and peptides are purified using automated HTP methods, before undergoing quality control and screening.


Asunto(s)
Escherichia coli/metabolismo , Animales , Disulfuros/metabolismo , Escherichia coli/genética , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ponzoñas/metabolismo
4.
Methods Mol Biol ; 2025: 439-476, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31267466

RESUMEN

PDZ domains recognize PDZ Binding Motifs (PBMs) at the extreme C-terminus of their partner proteins. The human proteome contains 266 identified PDZ domains, the PDZome, spread over 152 proteins. We previously developed the "holdup" chromatographic assay for high-throughput determination of PDZ-PBM affinities. In that work, we had used an expression library of 241 PDZ constructs (the "PDZome V.1"). Here, we cloned, produced, and characterized a new bacterial expression library ("PDZome V.2"), which comprises all the 266 known human PDZ domains as well as 37 PDZ tandem constructs. To ensure the best expression level, folding, and solubility, all construct boundaries were redesigned using available structural data and all DNA sequences were optimized for Escherichia coli expression. Consequently, all the PDZ constructs are produced in a soluble form. Precise quantification and quality control were carried out. The binding profiles previously published using "PDZome V.1" were reproduced and completed using the novel "PDZome V.2" library. We provide here the detailed description of the high-throughput protocols followed through the PDZ gene synthesis and cloning, PDZ production, holdup assay and data treatment.


Asunto(s)
Péptidos/metabolismo , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Dominios PDZ/genética , Dominios PDZ/fisiología , Biblioteca de Péptidos , Péptidos/química , Unión Proteica , Mapeo de Interacción de Proteínas
5.
Mol Microbiol ; 110(5): 777-795, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30204278

RESUMEN

With increasing numbers of 3D structures of bacteriophage components, combined with powerful in silico predictive tools, it has become possible to decipher the structural assembly and associated functionality of phage adhesion devices. Recently, decorations have been reported in the tail and neck passage structures of members of the so-called 936 group of lactococcal siphophages. In the current report, using bioinformatic analysis we identified a conserved carbohydrate binding module (CBM) among many of the virion baseplate Dit components, in addition to the CBM present in the 'classical' receptor binding proteins (RBPs). We observed that, within these so-called 'evolved' Dit proteins, the identified CBMs have structurally conserved folds, yet can be grouped into four distinct classes. We expressed such modules in fusion with GFP, and demonstrated their binding capability to their specific host using fluorescent binding assays with confocal microscopy. We detected evolved Dits in several phages infecting various Gram-positive bacterial species, including mycobacteria. The omnipresence of CBM domains in siphophages indicates their auxiliary role in infection, as they can assist in the specific recognition of and attachment to their host, thus ensuring a highly efficient and specific phage-host adhesion process as a prelude to DNA injection.


Asunto(s)
Lactococcus lactis/virología , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas de la Cola de los Virus/genética , Virión/genética , Carbohidratos/química , Modelos Moleculares , Unión Proteica , Conformación Proteica
6.
Microb Cell Fact ; 16(1): 6, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28095880

RESUMEN

BACKGROUND: Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. RESULTS: In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. CONCLUSIONS: Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large libraries of recombinant disulphide-reticulated peptides of remarkable interest for drug discovery programs.


Asunto(s)
Escherichia coli/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Biblioteca de Péptidos , Péptidos/genética , Proteínas Recombinantes/aislamiento & purificación , Ponzoñas/genética , Animales , Disulfuros/química , Descubrimiento de Drogas/métodos , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/genética , Oxidación-Reducción , Péptidos/aislamiento & purificación , Péptidos/uso terapéutico , Periplasma/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapéutico , Ponzoñas/química
7.
Microb Cell Fact ; 16(1): 4, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28093085

RESUMEN

BACKGROUND: Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. RESULTS: The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. CONCLUSIONS: This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.


Asunto(s)
Endopeptidasas/metabolismo , Escherichia coli/genética , Biosíntesis de Péptidos , Péptidos/genética , Ponzoñas/biosíntesis , Ponzoñas/genética , Animales , Biotecnología/métodos , Clonación Molecular , Disulfuros/química , Endopeptidasas/química , Vectores Genéticos , Ensayos Analíticos de Alto Rendimiento , Oxidación-Reducción , Péptidos/química , Péptidos/aislamiento & purificación , Periplasma/química , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solubilidad , Ponzoñas/química , Ponzoñas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA