Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(2): e0259423, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230926

RESUMEN

Fungal infections are a growing global health concern due to the limited number of available antifungal therapies as well as the emergence of fungi that are resistant to first-line antimicrobials, particularly azoles and echinocandins. Development of novel, selective antifungal therapies is challenging due to similarities between fungal and mammalian cells. An attractive source of potential antifungal treatments is provided by ecological niches co-inhabited by bacteria, fungi, and multicellular organisms, where complex relationships between multiple organisms have resulted in evolution of a wide variety of selective antimicrobials. Here, we characterized several analogs of one such natural compound, collismycin A. We show that NR-6226C has antifungal activity against several pathogenic Candida species, including C. albicans and C. glabrata, whereas it only has little toxicity against mammalian cells. Mechanistically, NR-6226C selectively chelates iron, which is a limiting factor for pathogenic fungi during infection. As a result, NR-6226C treatment causes severe mitochondrial dysfunction, leading to formation of reactive oxygen species, metabolic reprogramming, and a severe reduction in ATP levels. Using an in vivo model for fungal infections, we show that NR-6226C significantly increases survival of Candida-infected Galleria mellonella larvae. Finally, our data indicate that NR-6226C synergizes strongly with fluconazole in inhibition of C. albicans. Taken together, NR-6226C is a promising antifungal compound that acts by chelating iron and disrupting mitochondrial functions.IMPORTANCEDrug-resistant fungal infections are an emerging global threat, and pan-resistance to current antifungal therapies is an increasing problem. Clearly, there is a need for new antifungal drugs. In this study, we characterized a novel antifungal agent, the collismycin analog NR-6226C. NR-6226C has a favorable toxicity profile for human cells, which is essential for further clinical development. We unraveled the mechanism of action of NR-6226C and found that it disrupts iron homeostasis and thereby depletes fungal cells of energy. Importantly, NR-6226C strongly potentiates the antifungal activity of fluconazole, thereby providing inroads for combination therapy that may reduce or prevent azole resistance. Thus, NR-6226C is a promising compound for further development into antifungal treatment.


Asunto(s)
Antiinfecciosos , Micosis , Animales , Humanos , Antifúngicos/farmacología , Fluconazol/farmacología , Hierro , Candida , Micosis/microbiología , Candida albicans , Antiinfecciosos/farmacología , Azoles/farmacología , Candida glabrata , Quelantes del Hierro/farmacología , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Mamíferos
2.
Nat Cell Biol ; 25(10): 1478-1494, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37749225

RESUMEN

All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.


Asunto(s)
Histonas , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Leucina/metabolismo , Histonas/genética , Histonas/metabolismo , Hierro/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Desmetilación
3.
Transcription ; : 1-21, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655806

RESUMEN

The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.

4.
Proc Natl Acad Sci U S A ; 120(4): e2210593120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656860

RESUMEN

Mitotic entry correlates with the condensation of the chromosomes, changes in histone modifications, exclusion of transcription factors from DNA, and the broad downregulation of transcription. However, whether mitotic condensation influences transcription in the subsequent interphase is unknown. Here, we show that preventing one chromosome to condense during mitosis causes it to fail resetting of transcription. Rather, in the following interphase, the affected chromosome contains unusually high levels of the transcription machinery, resulting in abnormally high expression levels of genes in cis, including various transcription factors. This subsequently causes the activation of inducible transcriptional programs in trans, such as the GAL genes, even in the absence of the relevant stimuli. Thus, mitotic chromosome condensation exerts stringent control on interphase gene expression to ensure the maintenance of basic cellular functions and cell identity across cell divisions. Together, our study identifies the maintenance of transcriptional homeostasis during interphase as an unexpected function of mitosis and mitotic chromosome condensation.


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , Cromosomas/genética , Cromosomas/metabolismo , Interfase/genética , Mitosis/genética , Factores de Transcripción/metabolismo
5.
STAR Protoc ; 3(1): 101210, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35265859

RESUMEN

FUS3 and STE2 expression levels can be used as reporters for signaling through the pheromone pathway in the budding yeast Saccharomyces cerevisiae. Here, we describe an optimized protocol to measure the expression levels of FUS3 and STE2 using quantitative reverse transcription PCR (RT-qPCR). We describe the steps for comparing untreated and pheromone-treated yeast cells and how to quantify the changes in various deletion strains. The protocol can be applied to determine potential regulators of the pheromone pathway. For complete details on the use and execution of this protocol, please refer to Garcia et al. (2021).


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Levadura Seca , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Feromonas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética
6.
Nucleic Acids Res ; 50(3): 1351-1369, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35100417

RESUMEN

Tight control of gene expression networks required for adipose tissue formation and plasticity is essential for adaptation to energy needs and environmental cues. However, the mechanisms that orchestrate the global and dramatic transcriptional changes leading to adipocyte differentiation remain to be fully unraveled. We investigated the regulation of nascent transcription by the sumoylation pathway during adipocyte differentiation using SLAMseq and ChIPseq. We discovered that the sumoylation pathway has a dual function in differentiation; it supports the initial downregulation of pre-adipocyte-specific genes, while it promotes the establishment of the mature adipocyte transcriptional program. By characterizing endogenous sumoylome dynamics in differentiating adipocytes by mass spectrometry, we found that sumoylation of specific transcription factors like PPARγ/RXR and their co-factors are associated with the transcription of adipogenic genes. Finally, using RXR as a model, we found that sumoylation may regulate adipogenic transcription by supporting the chromatin occurrence of transcription factors. Our data demonstrate that the sumoylation pathway supports the rewiring of transcriptional networks required for formation of functional adipocytes. This study also provides the scientists in the field of cellular differentiation and development with an in-depth resource of the dynamics of the SUMO-chromatin landscape, SUMO-regulated transcription and endogenous sumoylation sites during adipocyte differentiation.


Asunto(s)
Adipogénesis , Sumoilación , Adipocitos/metabolismo , Adipogénesis/genética , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Factores de Transcripción/metabolismo
7.
Cell Rep ; 37(13): 110186, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965431

RESUMEN

Mechanisms have evolved that allow cells to detect signals and generate an appropriate response. The accuracy of these responses relies on the ability of cells to discriminate between signal and noise. How cells filter noise in signaling pathways is not well understood. Here, we analyze noise suppression in the yeast pheromone signaling pathway and show that the poorly characterized protein Kel1 serves as a major noise suppressor and prevents cell death. At the molecular level, Kel1 prevents spontaneous activation of the pheromone response by inhibiting membrane recruitment of Ste5 and Far1. Only a hypophosphorylated form of Kel1 suppresses signaling, reduces noise, and prevents pheromone-associated cell death, and our data indicate that the MAPK Fus3 contributes to Kel1 phosphorylation. Taken together, Kel1 serves as a phospho-regulated suppressor of the pheromone pathway to reduce noise, inhibit spontaneous activation of the pathway, regulate mating efficiency, and prevent pheromone-associated cell death.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ruido , Feromonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
8.
Front Microbiol ; 11: 582830, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013818

RESUMEN

Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in many cellular processes. However, excess iron can damage cells since it promotes the generation of reactive oxygen species. The budding yeast Saccharomyces cerevisiae has been used as a model organism to study the adaptation of eukaryotic cells to changes in iron availability. Upon iron deficiency, yeast utilizes two transcription factors, Aft1 and Aft2, to activate the expression of a set of genes known as the iron regulon, which are implicated in iron uptake, recycling and mobilization. Moreover, Aft1 and Aft2 activate the expression of Cth2, an mRNA-binding protein that limits the expression of genes encoding for iron-containing proteins or that participate in iron-using processes. Cth2 contributes to prioritize iron utilization in particular pathways over other highly iron-consuming and non-essential processes including mitochondrial respiration. Recent studies have revealed that iron deficiency also alters many other metabolic routes including amino acid and lipid synthesis, the mitochondrial retrograde response, transcription, translation and deoxyribonucleotide synthesis; and activates the DNA damage and general stress responses. At high iron levels, the yeast Yap5, Msn2, and Msn4 transcription factors activate the expression of a vacuolar iron importer called Ccc1, which is the most important high-iron protecting factor devoted to detoxify excess cytosolic iron that is stored into the vacuole for its mobilization upon scarcity. The complete sequencing and annotation of many yeast genomes is starting to unveil the diversity and evolution of the iron homeostasis network in this species.

9.
Biochim Biophys Acta Gene Regul Mech ; 1863(7): 194522, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32147528

RESUMEN

Eukaryotic ribonucleotide reductases are iron-dependent enzymes that catalyze the rate-limiting step in the de novo synthesis of deoxyribonucleotides. Multiple mechanisms regulate the activity of ribonucleotide reductases in response to genotoxic stresses and iron deficiency. Upon iron starvation, the Saccharomyces cerevisiae Aft1 transcription factor specifically binds to iron-responsive cis elements within the promoter of a group of genes, known as the iron regulon, activating their transcription. Members of the iron regulon participate in iron acquisition, mobilization and recycling, and trigger a genome-wide metabolic remodeling of iron-dependent pathways. Here, we describe a mechanism that optimizes the activity of yeast ribonucleotide reductase when iron is scarce. We demonstrate that Aft1 and the DNA-binding protein Ixr1 enhance the expression of the gene encoding for its catalytic subunit, RNR1, in response to iron limitation, leading to an increase in both mRNA and protein levels. By mutagenesis of the Aft1-binding sites within RNR1 promoter, we conclude that RNR1 activation by iron depletion is important for Rnr1 protein and deoxyribonucleotide synthesis. Remarkably, Aft1 also activates the expression of IXR1 upon iron scarcity through an iron-responsive element located within its promoter. These results provide a novel mechanism for the direct activation of ribonucleotide reductase function by the iron-regulated Aft1 transcription factor.


Asunto(s)
Deficiencias de Hierro , Ribonucleótido Reductasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Hierro/metabolismo , Unión Proteica , Elementos de Respuesta , Ribonucleótido Reductasas/metabolismo , Saccharomyces cerevisiae , Factores de Transcripción/genética , Activación Transcripcional
10.
Sci Rep ; 10(1): 233, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937829

RESUMEN

Iron is an essential element for all eukaryotic organisms because it participates as a redox active cofactor in a wide range of biological processes, including protein synthesis. Translation is probably the most energy consuming process in cells. Therefore, one of the initial responses of eukaryotic cells to stress or nutrient limitation is the arrest of mRNA translation. In first instance, the budding yeast Saccharomyces cerevisiae responds to iron deficiency by activating iron acquisition and remodeling cellular metabolism in order to prioritize essential over non-essential iron-dependent processes. We have determined that, despite a global decrease in transcription, mRNA translation is actively maintained during a short-term exposure to iron scarcity. However, a more severe iron deficiency condition induces a global repression of translation. Our results indicate that the Gcn2-eIF2α pathway limits general translation at its initiation step during iron deficiency. This bulk translational inhibition depends on the uncharged tRNA sensing Gcn1-Gcn20 complex. The involvement of the Gcn2-eIF2α pathway in the response to iron deficiency highlights its central role in the eukaryotic response to stress or nutritional deprivation, which is conserved from yeast to mammals.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Deficiencias de Hierro , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194414, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31394264

RESUMEN

Iron is an essential micronutrient that participates as a cofactor in a broad range of metabolic processes including mitochondrial respiration, DNA replication, protein translation and lipid biosynthesis. Adaptation to iron deficiency requires the global reorganization of cellular metabolism directed to optimize iron utilization. The budding yeast Saccharomyces cerevisiae has been widely used to characterize the responses of eukaryotic microorganisms to iron depletion. In this report, we used a genomic approach to investigate the contribution of transcription rates to the modulation of mRNA levels during adaptation of yeast cells to iron starvation. We reveal that a decrease in the activity of all RNA polymerases contributes to the down-regulation of many mRNAs, tRNAs and rRNAs. Opposite to the general expression pattern, many genes including components of the iron deficiency response, the mitochondrial retrograde pathway and the general stress response display a remarkable increase in both transcription rates and mRNA levels upon iron limitation, whereas genes encoding ribosomal proteins or implicated in ribosome biogenesis exhibit a pronounced fall. This expression profile is consistent with an activation of the environmental stress response. The phosphorylation stage of multiple regulatory factors strongly suggests that the conserved nutrient signaling pathway TORC1 is inhibited during the progress of iron deficiency. These results suggest an intricate crosstalk between iron metabolism and the TORC1 pathway that should be considered in many disorders.


Asunto(s)
Anemia Ferropénica/genética , Proteínas de Unión al ADN/genética , Hierro/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Adaptación Fisiológica/genética , Anemia Ferropénica/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/genética , Humanos , Fosforilación , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética
12.
Curr Genet ; 65(1): 139-145, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30128746

RESUMEN

Iron participates as a vital cofactor in multiple metabolic pathways. Despite its abundance, iron bioavailability is highly restricted in aerobic and alkaline environments. Therefore, living organisms have evolved multiple adaptive mechanisms to respond to iron scarcity. These strategies include a global remodeling of iron metabolism directed to optimize iron utilization. In the baker's yeast Saccharomyces cerevisiae, this metabolic reorganization is accomplished to a large extent by an mRNA-binding protein called Cth2. Yeast Cth2 belongs to a conserved family of tandem zinc finger containing proteins that specifically bind to transcripts with AU-rich elements and promote their turnover. A recent study has revealed that Cth2 also inhibits the translation of its target mRNAs (Ramos-Alonso et al., PLoS Genet 14:e1007476, https://doi.org/10.1371/journal.pgen.1007476 , 2018). Interestingly, the mammalian Cth2 ortholog known as tristetraprolin (aka TTP/TIS11/ZFP36), which is also implicated in controlling iron metabolism, promotes the decay and prevents the translation of its regulated transcripts. These observations open the possibility to study the relative contribution of altering mRNA stability and translation to the physiological adaptation to iron deficiency, the function played by the different domains within the mRNA-binding protein, and the potential factors implicated in coordinating both post-transcriptional events.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , Saccharomyces cerevisiae/genética , Adaptación Fisiológica/genética , Animales , Humanos , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
13.
Metallomics ; 10(9): 1245-1256, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30137082

RESUMEN

All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.


Asunto(s)
Hierro/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Regulación Fúngica de la Expresión Génica/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética
14.
Proc Natl Acad Sci U S A ; 115(27): E6291-E6300, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915044

RESUMEN

Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp display cardiac dysfunction with iron deficiency, demonstrating that TTP is necessary for maintaining cardiac function in the setting of low cellular iron. Altogether, our results describe a pathway that is activated in iron deficiency to regulate mitochondrial function to match the availability of Fe/S clusters.


Asunto(s)
Deficiencias de Hierro , Proteínas Hierro-Azufre/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , NADH Deshidrogenasa/metabolismo , Tristetraprolina/metabolismo , Animales , Línea Celular , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Proteínas Hierro-Azufre/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , NADH Deshidrogenasa/genética , Oxidación-Reducción , Tristetraprolina/genética
15.
PLoS Genet ; 14(6): e1007476, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912874

RESUMEN

In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.


Asunto(s)
Deficiencias de Hierro , Hierro/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo , Elementos Ricos en Adenilato y Uridilato , Adaptación Biológica/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Estabilidad del ARN/genética , ARN Mensajero/genética , Secuencias Reguladoras de Ácido Ribonucleico , Factores de Transcripción/genética
16.
Metallomics ; 9(11): 1483-1500, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28879348

RESUMEN

Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron-sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis and repair lead to DNA damage and genome instability. Recent studies have shown that yeast cells possess multi-layered mechanisms that regulate the ribonucleotide reductase function in response to fluctuations in iron bioavailability to maintain optimal deoxyribonucleotide concentrations. Finally, a fascinating DNA charge transport model indicates how the redox active Fe/S centers present in DNA repair machinery components are critical for detecting and repairing DNA mismatches along the genome by long-range charge transfers through double-stranded DNA. These unexpected connections between iron and DNA replication and repair have to be considered to properly understand cancer, aging and other DNA-related diseases.


Asunto(s)
Reparación del ADN , ADN/biosíntesis , Hierro/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN/genética , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Humanos , Hierro/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Saccharomyces cerevisiae/genética
17.
Front Microbiol ; 7: 1199, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536287

RESUMEN

Many factors, such as must composition, juice clarification, fermentation temperature, or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10-15°C) is becoming more prevalent in order to produce white and "rosé" wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins, and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1, and URM1, whose deletion strongly impaired low-temperature growth.

18.
Int J Food Microbiol ; 236: 38-46, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27442849

RESUMEN

Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature.


Asunto(s)
Microbiología de Alimentos , Saccharomyces cerevisiae/genética , Vino/microbiología , Adaptación Fisiológica/genética , Frío , Fermentación , Perfilación de la Expresión Génica , Genes Fúngicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...