Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(7): 112776, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37440411

RESUMEN

The nucleus accumbens (NAc) is a brain hub regulating motivated behaviors, including social competitiveness. Mitochondrial function in the NAc links anxiety with social competitiveness, and the mitochondrial fusion protein mitofusin 2 (Mfn2) in NAc neurons regulates anxiety-related behaviors. However, it remains unexplored whether accumbal Mfn2 levels also affect social behavior and whether Mfn2 actions in the emotional and social domain are driven by distinct cell types. Here, we found that subordinate-prone highly anxious rats show decreased accumbal Mfn2 levels and that Mfn2 overexpression promotes dominant behavior. In mice, selective Mfn2 downregulation in NAc dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) induced social subordination, accompanied by decreased accumbal mitochondrial functions and decreased excitability in D2-MSNs. Instead, D1-MSN-targeted Mfn2 downregulation affected competitive ability only transiently and likely because of an increase in anxiety-like behaviors. Our results assign dissociable cell-type specific roles to Mfn2 in the NAc in modulating social dominance and anxiety.


Asunto(s)
GTP Fosfohidrolasas , Proteínas Mitocondriales , Neuronas , Núcleo Accumbens , Animales , Ratones , Ratas , Encéfalo/metabolismo , Hidrolasas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Predominio Social , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo
2.
Elife ; 112022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36345724

RESUMEN

Emerging evidence is implicating mitochondrial function and metabolism in the nucleus accumbens in motivated performance. However, the brain is vulnerable to excessive oxidative insults resulting from neurometabolic processes, and whether antioxidant levels in the nucleus accumbens contribute to motivated performance is not known. Here, we identify a critical role for glutathione (GSH), the most important endogenous antioxidant in the brain, in motivation. Using proton magnetic resonance spectroscopy at ultra-high field in both male humans and rodent populations, we establish that higher accumbal GSH levels are highly predictive of better, and particularly, steady performance over time in effort-related tasks. Causality was established in in vivo experiments in rats that, first, showed that downregulating GSH levels through micro-injections of the GSH synthesis inhibitor buthionine sulfoximine in the nucleus accumbens impaired effort-based reward-incentivized performance. In addition, systemic treatment with the GSH precursor N-acetyl-cysteine increased accumbal GSH levels in rats and led to improved performance, potentially mediated by a cell-type-specific shift in glutamatergic inputs to accumbal medium spiny neurons. Our data indicate a close association between accumbal GSH levels and an individual's capacity to exert reward-incentivized effort over time. They also suggest that improvement of accumbal antioxidant function may be a feasible approach to boost motivation.


Asunto(s)
Motivación , Núcleo Accumbens , Humanos , Masculino , Ratas , Animales , Núcleo Accumbens/fisiología , Antioxidantes/metabolismo , Recompensa , Glutatión/metabolismo
3.
Elife ; 112022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188099

RESUMEN

Neuronal excitation imposes a high demand of ATP in neurons. Most of the ATP derives primarily from pyruvate-mediated oxidative phosphorylation, a process that relies on import of pyruvate into mitochondria occuring exclusively via the mitochondrial pyruvate carrier (MPC). To investigate whether deficient oxidative phosphorylation impacts neuron excitability, we generated a mouse strain carrying a conditional deletion of MPC1, an essential subunit of the MPC, specifically in adult glutamatergic neurons. We found that, despite decreased levels of oxidative phosphorylation and decreased mitochondrial membrane potential in these excitatory neurons, mice were normal at rest. Surprisingly, in response to mild inhibition of GABA mediated synaptic activity, they rapidly developed severe seizures and died, whereas under similar conditions the behavior of control mice remained unchanged. We report that neurons with a deficient MPC were intrinsically hyperexcitable as a consequence of impaired calcium homeostasis, which reduced M-type potassium channel activity. Provision of ketone bodies restored energy status, calcium homeostasis and M-channel activity and attenuated seizures in animals fed a ketogenic diet. Our results provide an explanation for the seizures that frequently accompany a large number of neuropathologies, including cerebral ischemia and diverse mitochondriopathies, in which neurons experience an energy deficit.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Animales , Proteínas de Transporte de Anión/genética , Transporte Biológico , Calcio/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Cuerpos Cetónicos , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidación-Reducción , Pentilenotetrazol/toxicidad , Fosforilación , Convulsiones/inducido químicamente , Tamoxifeno/farmacología
4.
Sci Rep ; 11(1): 7395, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795747

RESUMEN

Wnt signaling plays a key role in neurodevelopment and neuronal maturation. Specifically, Wnt5a stimulates postsynaptic assemblies, increases glutamatergic neurotransmission and, through calcium signaling, generates nitric oxide (NO). Trying to unveil the molecular pathway triggering these postsynaptic effects, we found that Wnt5a treatment induces a time-dependent increases in the length of the postsynaptic density (PSD), elicits novel synaptic contacts and facilitates F-actin flow both in in vitro and ex vivo models. These effects were partially abolished by the inhibition of the Heme-regulated eukaryotic initiation factor 2α (HRI) kinase, a kinase which phosphorylates the initiation translational factor eIF2α. When phosphorylated, eIF2α normally avoids the translation of proteins not needed during stress conditions, in order to avoid unnecessary energetic expenses. However, phosphorylated eIF2α promotes the translation of some proteins with more than one open reading frame in its 5' untranslated region. One of these proteins targeted by Wnt-HRI-eIF2α mediated translation is the GluN2B subunit of the NMDA receptor. The identified increase in GluN2B expression correlated with increased NMDA receptor function. Considering that NMDA receptors are crucial for excitatory synaptic transmission, the molecular pathway described here contributes to the understanding of the fast and plastic translational mechanisms activated during learning and memory processes.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Wnt-5a/metabolismo , Regiones no Traducidas 5' , Actinas/metabolismo , Animales , Medios de Cultivo Condicionados , Regulación de la Expresión Génica , Hipocampo/metabolismo , Aprendizaje , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Óxido Nítrico/metabolismo , Sistemas de Lectura Abierta , Fosforilación , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Sinaptosomas/metabolismo
5.
Eur J Neurosci ; 53(9): 2973-2985, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32609904

RESUMEN

Brain mitochondrial function is critical for numerous neuronal processes. We recently identified a link between brain energy and social dominance, where higher levels of mitochondrial function resulted in increased social competitive ability. The underlying mechanism of this link, however, remains unclear. Here, we investigated the contribution of astrocytic release of adenosine triphosphate (ATP) through the type 2 inositol 1,4,5-triphosphate receptor to social dominance behavior. Mice lacking the type 2 inositol 1,4,5-triphosphate receptor were characterized for their social dominance behavior, as well as their performance on a nonsocial task, the Morris Water Maze. In parallel, we also examined mitochondrial function in the medial prefrontal cortex, nucleus accumbens, and hippocampus to investigate how deficiencies in astrocytic ATP could modulate overall mitochondrial function. While knockout mice showed similar competitive ability compared with their wild-type littermates, dominant knockout mice exhibited a significant delay in exerting their dominance during the initial encounter. Otherwise, there were no differences in anxiety and exploratory traits, spatial learning and memory, or brain mitochondrial function in either light or dark circadian phases. Our findings point to a marginal role of astrocytic ATP through IP3 R2 in social competition, suggesting that, under basal conditions, the neuronal compartment is predominant for social dominance exertion.


Asunto(s)
Señalización del Calcio , Calcio , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Inositol , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Noqueados , Predominio Social
6.
Neurosci Biobehav Rev ; 114: 134-155, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32438253

RESUMEN

The mammalian brain has high energy demands, which may become higher in response to environmental challenges such as psychogenic stress exposure. Therefore, efficient neutralization of reactive oxygen species that are produced as a by-product of ATP synthesis is crucial for preventing oxidative damage and ensuring normal energy supply and brain function. Glutathione (GSH) is arguably the most important endogenous antioxidant in the brain. In recent years, aberrant GSH levels have been implicated in different psychiatric disorders, including stress-related psychopathologies. In this review, we examine the available data supporting a role for GSH levels and antioxidant function in the brain in relation to anxiety and stress-related psychopathologies. Additionally, we identify several promising compounds that could raise GSH levels in the brain by either increasing the availability of its precursors or the expression of GSH-regulating enzymes through activation of Nuclear factor erythroid-2-related factor 2 (Nrf2). Given the high tolerability and safety profile of these compounds, they may represent attractive new opportunities to complement existing therapeutic manipulations against stress-related psychopathologies.


Asunto(s)
Glutatión , Estrés Oxidativo , Animales , Antioxidantes , Glutatión/metabolismo , Humanos , Especies Reactivas de Oxígeno
8.
Nat Cell Biol ; 21(6): 755-767, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110288

RESUMEN

Mitochondria-associated membranes (MAMs) are central microdomains that fine-tune bioenergetics by the local transfer of calcium from the endoplasmic reticulum to the mitochondrial matrix. Here, we report an unexpected function of the endoplasmic reticulum stress transducer IRE1α as a structural determinant of MAMs that controls mitochondrial calcium uptake. IRE1α deficiency resulted in marked alterations in mitochondrial physiology and energy metabolism under resting conditions. IRE1α determined the distribution of inositol-1,4,5-trisphosphate receptors at MAMs by operating as a scaffold. Using mutagenesis analysis, we separated the housekeeping activity of IRE1α at MAMs from its canonical role in the unfolded protein response. These observations were validated in vivo in the liver of IRE1α conditional knockout mice, revealing broad implications for cellular metabolism. Our results support an alternative function of IRE1α in orchestrating the communication between the endoplasmic reticulum and mitochondria to sustain bioenergetics.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/genética , Metabolismo Energético , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Retículo Endoplásmico/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Ratones Noqueados , Mitocondrias/genética
9.
Mol Neurobiol ; 56(3): 1870-1882, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29967987

RESUMEN

Wnt signaling regulates brain development and synapse maturation; however, the precise molecular mechanism remains elusive. Here, we report that Wnt-7a stimulates dendritic spine morphogenesis in the hippocampus via glycogen synthase kinase-3 ß (GSK-3ß) inhibition, triggering ß-catenin/T cell factor/lymphoid enhancer factor (TCF/LEF)-dependent gene transcription and promoting postsynaptic density-95 (PSD-95) protein expression. In addition, wild-type mice treated with an inhibitor of ß-catenin/TCF/LEF-mediated transcription showed a reduction in spatial memory acquisition accompanied by a reduction in PSD-95 and decreases in spine density measured by Golgi staining, suggesting that PSD-95 is a novel Wnt target gene. Together, our data strongly demonstrate that Wnt-dependent target gene transcription is essential to hippocampal synaptic plasticity.


Asunto(s)
Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Plasticidad Neuronal/fisiología , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/farmacología , Animales , Espinas Dendríticas/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , beta Catenina/metabolismo
10.
PLoS One ; 12(1): e0168840, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28060833

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder mainly known for synaptic impairment and neuronal cell loss, affecting memory processes. Beside these damages, mitochondria have been implicated in the pathogenesis of AD through the induction of the mitochondrial permeability transition pore (mPTP). The mPTP is a non-selective pore that is formed under apoptotic conditions, disturbing mitochondrial structure and thus, neuronal viability. In AD, Aß oligomers (Aßos) favor the opening of the pore, activating mitochondria-dependent neuronal cell death cascades. The Wnt signaling activated through the ligand Wnt3a has been described as a neuroprotective signaling pathway against amyloid-ß (Aß) peptide toxicity in AD. However, the mechanisms by which Wnt signaling prevents Aßos-induced neuronal cell death are unclear. We proposed here to study whether Wnt signaling protects neurons earlier than the late damages in the progression of the disease, through the preservation of the mitochondrial structure by the mPTP inhibition. To study specific events related to mitochondrial permeabilization we performed live-cell imaging from primary rat hippocampal neurons, and electron microscopy to analyze the mitochondrial morphology and structure. We report here that Wnt3a prevents an Aßos-induced cascade of mitochondrial events that leads to neuronal cell death. This cascade involves (a) mPTP opening, (b) mitochondrial swelling, (c) mitochondrial membrane potential loss and (d) cytochrome c release, thus leading to neuronal cell death. Furthermore, our results suggest that the activation of the Wnt signaling prevents mPTP opening by two possible mechanisms, which involve the inhibition of mitochondrial GSK-3ß and/or the modulation of mitochondrial hexokinase II levels and activity. This study suggests a possible new approach for the treatment of AD from a mitochondrial perspective, and will also open new lines of study in the field of Wnt signaling in neuroprotection.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neuronas/metabolismo , Vía de Señalización Wnt , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Animales , Células Cultivadas , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hexoquinasa/metabolismo , Hipocampo/citología , Hipocampo/ultraestructura , Membranas Mitocondriales/ultraestructura , Dilatación Mitocondrial , Neuronas/ultraestructura , Permeabilidad , Fosforilación , Embarazo , Ratas , Ratas Sprague-Dawley , Proteína Wnt3A/metabolismo
11.
Oncotarget ; 7(37): 58876-58892, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27557499

RESUMEN

The activation of N-Methyl D-Aspartate Receptor (NMDAR) by glutamate is crucial in the nervous system function, particularly in memory and learning. NMDAR is composed by two GluN1 and two GluN2 subunits. GluN2B has been reported to participate in the prevalent NMDAR subtype at synapses, the GluN1/2A/2B. Here we studied the regulation of GluN2B expression in cortical neurons finding that glutamate up-regulates GluN2B translation through the action of nitric oxide (NO), which induces the phosphorylation of the eukaryotic translation initiation factor 2 α (eIF2α). It is a process mediated by the NO-heme-regulated eIF2α kinase (HRI), as the effect was avoided when a specific HRI inhibitor or a HRI small interfering RNA (siHRI) were used. We found that the expressed GluN2B co-localizes with PSD-95 at the postsynaptic ending, which strengthen the physiological relevance of the proposed mechanism. Moreover the receptors bearing GluN2B subunits upon NO stimulation are functional as high Ca2+ entry was measured and increases the co-localization between GluN2B and GluN1 subunits. In addition, the injection of the specific HRI inhibitor in mice produces a decrease in memory retrieval as tested by the Novel Object Recognition performance. Summarizing our data suggests that glutamatergic stimulation induces HRI activation by NO to trigger GluN2B expression and this process would be relevant to maintain postsynaptic activity in cortical neurons.


Asunto(s)
Corteza Cerebelosa/patología , Homólogo 4 de la Proteína Discs Large/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Células Cultivadas , Factor 2 Eucariótico de Iniciación/genética , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Hemo/metabolismo , Humanos , Memoria , Ratones , Ratones Endogámicos , Neuronas/patología , Óxido Nítrico/metabolismo , Fosforilación , Biosíntesis de Proteínas , ARN Interferente Pequeño/genética , Receptores de N-Metil-D-Aspartato/genética
12.
J Biol Chem ; 291(36): 19092-107, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27402827

RESUMEN

Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gßγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons.


Asunto(s)
Espinas Dendríticas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Hipocampo/metabolismo , Receptores de Neurotransmisores/metabolismo , Transducción de Señal/fisiología , Proteína Wnt-5a/metabolismo , Animales , Línea Celular Transformada , Espinas Dendríticas/genética , Receptores Frizzled , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Hipocampo/citología , Ratones , Ratas , Ratas Sprague-Dawley , Receptores de Neurotransmisores/genética , Proteína Wnt-5a/genética
13.
Neural Plast ; 2016: 4258171, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881110

RESUMEN

Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gα(o) signaling, increasing the intracellular Ca(2+) concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gα(o) subunit signaling in the regulation of synapse formation.


Asunto(s)
Espinas Dendríticas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Péptidos/administración & dosificación , Sinapsis/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Espinas Dendríticas/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos
14.
Mol Neurobiol ; 53(1): 299-309, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25429903

RESUMEN

Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.


Asunto(s)
Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Solubilidad , Factores de Crecimiento Transformadores/metabolismo , Proteínas Wnt/metabolismo
15.
Antioxid Redox Signal ; 22(15): 1295-307, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25706765

RESUMEN

AIMS: Hippocampus is the brain center for memory formation, a process that requires synaptogenesis. However, hippocampus is dramatically compromised in Alzheimer's disease due to the accumulation of amyloid ß-peptide, whose production is initiated by ß-site APP Cleaving Enzyme 1 (BACE1). It is known that pathological stressors activate BACE1 translation through the phosphorylation of the eukaryotic initiation factor-2α (eIF2α) by GCN2, PERK, or PKR kinases, leading to amyloidogenesis. However, BACE1 physiological regulation is still unclear. Since nitric oxide (NO) participates directly in hippocampal glutamatergic signaling, we investigated the neuronal role of the heme-regulated eukaryotic initiation factor eIF2α kinase (HRI), which can bind NO by a heme group, in BACE1 translation and its physiological consequences. RESULTS: We found that BACE1 is expressed on glutamate activation with NO being the downstream effector by triggering eIF2α phosphorylation, as it was obtained by Western blot and luciferase assay. It is due to the activation of HRI by NO as assayed by Western blot and immunofluorescence with an HRI inhibitor and HRI siRNA. BACE1 expression was early detected at synaptic spines, contributing to spine growth and consolidating the hippocampal memory as assayed with mice treated with HRI or neuronal NO synthase inhibitors. INNOVATION: We provide the first description that HRI and eIF2α are working in physiological conditions in the brain under the control of nitric oxide and glutamate signaling, and also that BACE1 has a physiological role in hippocampal function. CONCLUSION: We conclude that BACE1 translation is controlled by NO through HRI in glutamatergic hippocampal synapses, where it plays physiological functions, allowing the spine growth and memory consolidation.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Sinapsis/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Células Cultivadas , Factor 2 Eucariótico de Iniciación/metabolismo , Ácido Glutámico/farmacología , Hipocampo/embriología , Hipocampo/metabolismo , Humanos , Consolidación de la Memoria , Ratones , Neuronas/citología , Fosforilación , Biosíntesis de Proteínas , Ratas
16.
Biochim Biophys Acta ; 1852(3): 421-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25500153

RESUMEN

Ischemic stroke is an acute vascular event that compromises neuronal viability, and identification of the pathophysiological mechanisms is critical for its correct management. Ischemia produces increased nitric oxide synthesis to recover blood flow but also induces a free radical burst. Nitric oxide and superoxide anion react to generate peroxynitrite that nitrates tyrosines. We found that fibrinogen nitrotyrosination was detected in plasma after the initiation of ischemic stroke in human patients. Electron microscopy and protein intrinsic fluorescence showed that in vitro nitrotyrosination of fibrinogen affected its structure. Thromboelastography showed that initially fibrinogen nitrotyrosination retarded clot formation but later made the clot more resistant to fibrinolysis. This result was independent of any effect on thrombin production. Immunofluorescence analysis of affected human brain areas also showed that both fibrinogen and nitrotyrosinated fibrinogen spread into the brain parenchyma after ischemic stroke. Therefore, we assayed the toxicity of fibrinogen and nitrotyrosinated fibrinogen in a human neuroblastoma cell line. For that purpose we measured the activity of caspase-3, a key enzyme in the apoptotic pathway, and cell survival. We found that nitrotyrosinated fibrinogen induced higher activation of caspase 3. Accordingly, cell survival assays showed a more neurotoxic effect of nitrotyrosinated fibrinogen at all concentrations tested. In summary, nitrotyrosinated fibrinogen would be of pathophysiological interest in ischemic stroke due to both its impact on hemostasis - it impairs thrombolysis, the main target in stroke treatments - and its neurotoxicity that would contribute to the death of the brain tissue surrounding the infarcted area.


Asunto(s)
Apoptosis , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Fibrinógeno/metabolismo , Fibrinólisis , Neuronas/metabolismo , Accidente Cerebrovascular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/patología , Isquemia Encefálica/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Activación Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Tirosina/análogos & derivados , Tirosina/metabolismo
17.
Mol Membr Biol ; 31(5): 152-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25046533

RESUMEN

The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.


Asunto(s)
Barrera Hematoencefálica/ultraestructura , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Endotelio Vascular/ultraestructura , Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Endotelio Vascular/efectos de los fármacos , Humanos , Liposomas/administración & dosificación , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/patología , Nanotecnología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología
18.
J Alzheimers Dis ; 41(1): 273-88, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24614897

RESUMEN

Amyloid-ß peptide (Aß) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aß42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aß42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aß action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aß oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Apoptosis/fisiología , Neuronas/fisiología , Fragmentos de Péptidos/metabolismo , Piruvaldehído/metabolismo , Triosa-Fosfato Isomerasa/metabolismo , Anciano , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Apoptosis/genética , Encéfalo/fisiopatología , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Simulación por Computador , Femenino , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Modelos Moleculares , Presenilina-1/genética , Triosa-Fosfato Isomerasa/genética
19.
J Alzheimers Dis ; 40(3): 643-57, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24503620

RESUMEN

Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-ß peptide (Aß) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aß aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.


Asunto(s)
Albúminas/metabolismo , Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Tirosina/análogos & derivados , Anciano , Albúminas/efectos de los fármacos , Albúminas/farmacología , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Femenino , Glicosilación , Humanos , Masculino , Molsidomina/análogos & derivados , Molsidomina/farmacología , Neuronas/efectos de los fármacos , Agregado de Proteínas/fisiología , Tripsina/farmacología , Tirosina/metabolismo , Proteínas tau/metabolismo
20.
Oxid Med Cell Longev ; 2013: 826143, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23983901

RESUMEN

Ischemic stroke is an acute vascular event that obstructs blood supply to the brain, producing irreversible damage that affects neurons but also glial and brain vessel cells. Immediately after the stroke, the ischemic tissue produces nitric oxide (NO) to recover blood perfusion but also produces superoxide anion. These compounds interact, producing peroxynitrite, which irreversibly nitrates protein tyrosines. The present study measured NO production in a human neuroblastoma (SH-SY5Y), a murine glial (BV2), a human endothelial cell line (HUVEC), and in primary cultures of human cerebral myocytes (HC-VSMCs) after experimental ischemia in vitro. Neuronal, endothelial, and inducible NO synthase (NOS) expression was also studied up to 24 h after ischemia, showing a different time course depending on the NOS type and the cells studied. Finally, we carried out cell viability experiments on SH-SY5Y cells with H2O2, a prooxidant agent, and with a NO donor to mimic ischemic conditions. We found that both compounds were highly toxic when they interacted, producing peroxynitrite. We obtained similar results when all cells were challenged with peroxynitrite. Our data suggest that peroxynitrite induces cell death and is a very harmful agent in brain ischemia.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Proteínas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tirosina/análogos & derivados , Tirosina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA