Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Neurol Neurosurg Psychiatry ; 95(4): 316-324, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37827570

RESUMEN

BACKGROUND: Cognitive and behavioural dysfunction may occur in people with motor neuron disease (MND), with some studies suggesting an association with the C9ORF72 repeat expansion. Their onset and progression, however, is poorly understood. We explored how cognition and behaviour change over time, and whether demographic, clinical and genetic factors impact these changes. METHODS: Participants with MND were recruited through the Phenotype-Genotype-Biomarker study. Every 3-6 months, the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was used to assess amyotrophic lateral sclerosis (ALS) specific (executive functioning, verbal fluency, language) and ALS non-specific (memory, visuospatial) functions. Informants reported on behaviour symptoms via semi-structured interview. RESULTS: Participants with neuropsychological data at ≥3 visits were included (n=237, mean age=59, 60% male), of which 18 (8%) were C9ORF72 positive. Baseline cognitive impairment was apparent in 18 (8%), typically in ALS specific domains, and associated with lower education, but not C9ORF72 status. Cognition, on average, remained stable over time, with two exceptions: (1) C9ORF72 carriers declined in all ECAS domains, (2) 8%-9% of participants with baseline cognitive impairment further declined, primarily in the ALS non-specific domain, which was associated with less education. Behavioural symptoms were uncommon. CONCLUSIONS: In this study, cognitive dysfunction was less common than previously reported and remained stable over time for most. However, cognition declines longitudinally in a small subset, which is not entirely related to C9ORF72 status. Our findings raise questions about the timing of cognitive impairment in MND, and whether it arises during early clinically manifest disease or even prior to motor manifestations.


Asunto(s)
Esclerosis Amiotrófica Lateral , Disfunción Cognitiva , Enfermedad de la Neurona Motora , Humanos , Masculino , Persona de Mediana Edad , Femenino , Esclerosis Amiotrófica Lateral/diagnóstico , Proteína C9orf72/genética , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/complicaciones , Cognición/fisiología , Pruebas Neuropsicológicas
2.
Nat Commun ; 14(1): 5035, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596258

RESUMEN

ABCG2 is a medically important ATP-binding cassette transporter with crucial roles in the absorption and distribution of chemically-diverse toxins and drugs, reducing the cellular accumulation of chemotherapeutic drugs to facilitate multidrug resistance in cancer. ABCG2's capacity to transport both hydrophilic and hydrophobic compounds is not well understood. Here we assess the molecular basis for substrate discrimination by the binding pocket. Substitution of a phylogenetically-conserved polar residue, N436, to alanine in the binding pocket of human ABCG2 permits only hydrophobic substrate transport, revealing the unique role of N436 as a discriminator. Molecular dynamics simulations show that this alanine substitution alters the electrostatic potential of the binding pocket favoring hydration of the transport pore. This change affects the contact with substrates and inhibitors, abrogating hydrophilic compound transport while retaining the transport of hydrophobic compounds. The N436 residue is also required for optimal transport inhibition of ABCG2, as many inhibitors are functionally impaired by this ABCG2 mutation. Overall, these findings have biomedical implications, broadly extending our understanding of substrate and inhibitor interactions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Alanina , Humanos , Electricidad Estática , Inhibición Psicológica , Simulación de Dinámica Molecular , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias/genética
3.
Neurol Genet ; 9(4): e200077, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37346932

RESUMEN

Background and Objectives: Amyotrophic lateral sclerosis (ALS) is a degenerative condition of the brain and spinal cord in which protein-coding variants in known ALS disease genes explain a minority of sporadic cases. There is a growing interest in the role of noncoding structural variants (SVs) as ALS risk variants or genetic modifiers of ALS phenotype. In small European samples, specific short SV alleles in noncoding regulatory regions of SCAF4, SQSTM1, and STMN2 have been reported to be associated with ALS, and several groups have investigated the possible role of SMN1/SMN2 gene copy numbers in ALS susceptibility and clinical severity. Methods: Using short-read whole genome sequencing (WGS) data, we investigated putative ALS-susceptibility SCAF4 (3'UTR poly-T repeat), SQSTM1 (intron 5 AAAC insertion), and STMN2 (intron 3 CA repeat) alleles in African ancestry patients with ALS and described the architecture of the SMN1/SMN2 gene region. South African cases with ALS (n = 114) were compared with ancestry-matched controls (n = 150), 1000 Genomes Project samples (n = 2,336), and H3Africa Genotyping Chip Project samples (n = 347). Results: There was no association with previously reported SCAF4 poly-T repeat, SQSTM1 AAAC insertion, and long STMN2 CA alleles with ALS risk in South Africans (p > 0.2). Similarly, SMN1 and SMN2 gene copy numbers did not differ between South Africans with ALS and matched population controls (p > 0.9). Notably, 20% of the African samples in this study had no SMN2 gene copies, which is a higher frequency than that reported in Europeans (approximately 7%). Discussion: We did not replicate the reported association of SCAF4, SQSTM1, and STMN2 short SVs with ALS in a small South African sample. In addition, we found no link between SMN1 and SMN2 copy numbers and susceptibility to ALS in this South African sample, which is similar to the conclusion of a recent meta-analysis of European studies. However, the SMN gene region findings in Africans replicate previous results from East and West Africa and highlight the importance of including diverse population groups in disease gene discovery efforts. The clinically relevant differences in the SMN gene architecture between African and non-African populations may affect the effectiveness of targeted SMN2 gene therapy for related diseases such as spinal muscular atrophy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36896705

RESUMEN

Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS. Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests. Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes. Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Mutación , Pruebas Genéticas/métodos , Proteína C9orf72/genética
5.
Neuro Oncol ; 25(2): 386-397, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35652336

RESUMEN

BACKGROUND: Recurrent atypical teratoid/rhabdoid tumor (AT/RT) is, most often, a fatal pediatric malignancy with limited curative options. METHODS: We conducted a phase II study of Aurora kinase A inhibitor alisertib in patients aged <22 years with recurrent AT/RT. Patients received alisertib once daily (80 mg/m2 as enteric-coated tablets or 60 mg/m2 as liquid formulation) on Days 1-7 of a 21-day cycle until progressive disease (PD) occurred. Alisertib plasma concentrations were measured in cycle 1 on Days 1 (single dose) and 7 (steady state) and analyzed with noncompartmental pharmacokinetics. Trial efficacy end point was ≥10 participants with stable disease (SD) or better at 12 weeks. RESULTS: SD (n = 8) and partial response (PR) (n = 1) were observed among 30 evaluable patients. Progression-free survival (PFS) was 30.0% ± 7.9% at 6 months and 13.3% ± 5.6% at 1 year. One-year overall survival (OS) was 36.7% ± 8.4%. Two patients continued treatment for >12 months. PFS did not differ by AT/RT molecular groups. Neutropenia was the most common adverse effect (n = 23/30, 77%). The 22 patients who received liquid formulation had a higher mean maximum concentration (Cmax) of 10.1 ± 3.0 µM and faster time to Cmax (Tmax = 1.2 ± 0.7 h) than those who received tablets (Cmax = 5.7 ± 2.4 µM, Tmax = 3.4 ± 1.4 h). CONCLUSIONS: Although the study did not meet predetermined efficacy end point, single-agent alisertib was well tolerated by children with recurrent AT/RT, and SD or PR was observed in approximately a third of the patients.


Asunto(s)
Antineoplásicos , Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Niño , Humanos , Antineoplásicos/uso terapéutico , Tumor Rabdoide/tratamiento farmacológico , Azepinas/uso terapéutico , Pirimidinas/uso terapéutico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Aurora Quinasa A , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos
6.
Blood ; 141(11): 1293-1307, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977101

RESUMEN

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Adulto Joven , Adulto , Enfermedad de Hodgkin/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Codón sin Sentido , Secuenciación Completa del Genoma , Linaje , Proteínas de Ciclo Celular/genética
7.
Curr Res Transl Med ; 72(2): 103433, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38244277

RESUMEN

PURPOSE: Neurocognitive impairment is a common and debilitating complication of sickle cell disease (SCD) resulting from a combination of biological and environmental factors. The catechol-O-methyltransferase (COMT) gene modulates levels of dopamine availability in the prefrontal cortex. COMT has repeatedly been implicated in the perception of pain stimuli and frequency of pain crises in patients with SCD and is known to be associated with neurocognitive functioning in the general population. The current study aimed to examine the associations of genetic variants in COMT and neurocognitive functioning in patients with SCD. PATIENTS AND METHODS: The Sickle Cell Clinical Research and Intervention Program (SCCRIP) longitudinal cohort was used as a discovery cohort (n = 166). The genotypes for 5 SNPs (rs6269, rs4633, rs4818, rs4680, and rs165599) in COMT were extracted from whole genome sequencing data and analyzed using a dominant model. A polygenic score for COMT (PGSCOMT) integrating these 5 SNPs was analyzed as a continuous variable. The Cooperative Study of Sickle Cell Disease (CSSCD, n = 156) and the Silent Cerebral Infarction Transfusion (SIT, n = 114) Trial were used as 2 independent replication cohorts. Due to previously reported sex differences, all analyses were conducted separately in males and females. The Benjamini and Hochberg approach was used to calculate false discovery rate adjusted p-value (q-value). RESULTS: In SCCRIP, 1 out of 5 SNPs (rs165599) was associated with IQ at q<0.05 in males but not females, and 2 other SNPs (rs4633 and rs4680) were marginally associated with sustained attention at p<0.05 in males only but did not maintain at q<0.05. PGSCOMT was negatively associated with IQ and sustained attention at p<0.05 in males only. Using 3 cohorts' data, 4 out of 5 SNPs (rs6269, rs4633, rs4680, rs165599) were associated with IQ (minimum q-value = 0.0036) at q<0.05 among male participants but not female participants. The PGSCOMT was negatively associated with IQ performance among males but not females across all cohorts. CONCLUSION: Select COMT SNPs are associated with neurocognitive abilities in males with SCD. By identifying genetic predictors of neurocognitive performance in SCD, it may be possible to risk-stratify patients from a young age to guide implementation of early interventions.

8.
Nat Genet ; 54(9): 1376-1389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36050548

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Aberraciones Cromosómicas , Exoma/genética , Genómica , Humanos , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
9.
Curr Res Transl Med ; 70(3): 103335, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35303690

RESUMEN

PURPOSE OF THE STUDY: Fetal hemoglobin (HbF) is a modifier of the clinical and hematologic phenotype of sickle cell anemia (SCA). Three quantitative trait loci (QTL) modulate HbF expression. The neurocognitive effects of variants in these QTL have yet to be explored. We evaluated the relation between 11 SNPs in the three HbF QTL: BCL11A, MYB, the HBB gene cluster, and full-scale intelligence (IQ) in SCA. PATIENTS AND METHODS: The prospective longitudinal cohort study, Sickle Cell Clinical Research and Intervention Program, was used as a discovery cohort (n = 166). The genotypes for 11 SNPs were extracted through whole genome sequencing and were analyzed using an additive model. A polygenic score for HbF (PGSHbF) integrating the numbers of low HbF alleles from 11 SNPs was analyzed as a continuous variable. The Cooperative Study of Sickle Cell Disease (n = 156) and the Silent Cerebral Infarction Transfusion (n = 114) Trial were used as two independent replication cohorts. Benjamini and Hochberg approach was used to calculate false discovery rate adjusted p-value (pFDR). RESULTS: HbF was positively associated with IQ (minimum raw p = 0·0018) at pFDR<0·05. HbF mediated the relationship between two BCL11A SNPs, rs1427407 and rs7606173, HBS1L-MYB: rs9494142, and PGSHbF with IQ (minimum raw p = 0·0035) at pFDR<0·05. CONCLUSION: As the major modulator of the severity of SCA, HbF also influences neurocognition, which is done through mediation of its QTL. These findings have implications for early identification of neurocognitive risk and targeted intervention.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Hemoglobina Fetal/análisis , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Humanos , Estudios Longitudinales , Estudios Prospectivos , Proteínas Represoras/genética
10.
Blood Cancer Discov ; 3(3): 194-207, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35176137

RESUMEN

The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE: We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.


Asunto(s)
Leucemia Mieloide Aguda , Adulto , Niño , Aberraciones Cromosómicas , Exones , Genómica , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Recurrencia
11.
Neurol Genet ; 8(1): e654, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35047667

RESUMEN

BACKGROUND AND OBJECTIVES: To perform the first screen of 44 amyotrophic lateral sclerosis (ALS) genes in a cohort of African genetic ancestry individuals with ALS using whole-genome sequencing (WGS) data. METHODS: One hundred three consecutive cases with probable/definite ALS (using the revised El Escorial criteria), and self-categorized as African genetic ancestry, underwent WGS using various Illumina platforms. As population controls, 238 samples from various African WGS data sets were included. Our analysis was restricted to 44 ALS genes, which were curated for rare sequence variants and classified according to the American College of Medical Genetics guidelines as likely benign, uncertain significance, likely pathogenic, or pathogenic variants. RESULTS: Thirteen percent of 103 ALS cases harbored pathogenic variants; 5 different SOD1 variants (N87S, G94D, I114T, L145S, and L145F) in 5 individuals (5%, 1 familial case), pathogenic C9orf72 repeat expansions in 7 individuals (7%, 1 familial case) and a likely pathogenic ANXA11 (G38R) variant in 1 individual. Thirty individuals (29%) harbored ≥1 variant of uncertain significance; 10 of these variants had limited pathogenic evidence, although this was insufficient to permit confident classification as pathogenic. DISCUSSION: Our findings show that known ALS genes can be expected to identify a genetic cause of disease in >11% of sporadic ALS cases of African genetic ancestry. Similar to European cohorts, the 2 most frequent genes harboring pathogenic variants in this population group are C9orf72 and SOD1.

12.
Blood Adv ; 5(14): 2839-2851, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34283174

RESUMEN

Individuals with monogenic disorders can experience variable phenotypes that are influenced by genetic variation. To investigate this in sickle cell disease (SCD), we performed whole-genome sequencing (WGS) of 722 individuals with hemoglobin HbSS or HbSß0-thalassemia from Baylor College of Medicine and from the St. Jude Children's Research Hospital Sickle Cell Clinical Research and Intervention Program (SCCRIP) longitudinal cohort study. We developed pipelines to identify genetic variants that modulate sickle hemoglobin polymerization in red blood cells and combined these with pain-associated variants to build a polygenic score (PGS) for acute vaso-occlusive pain (VOP). Overall, we interrogated the α-thalassemia deletion -α3.7 and 133 candidate single-nucleotide polymorphisms (SNPs) across 66 genes for associations with VOP in 327 SCCRIP participants followed longitudinally over 6 years. Twenty-one SNPs in 9 loci were associated with VOP, including 3 (BCL11A, MYB, and the ß-like globin gene cluster) that regulate erythrocyte fetal hemoglobin (HbF) levels and 6 (COMT, TBC1D1, KCNJ6, FAAH, NR3C1, and IL1A) that were associated previously with various pain syndromes. An unweighted PGS integrating all 21 SNPs was associated with the VOP event rate (estimate, 0.35; standard error, 0.04; P = 5.9 × 10-14) and VOP event occurrence (estimate, 0.42; standard error, 0.06; P = 4.1 × 10-13). These associations were stronger than those of any single locus. Our findings provide insights into the genetic modulation of VOP in children with SCD. More generally, we demonstrate the utility of WGS for investigating genetic contributions to the variable expression of SCD-associated morbidities.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Niño , Hemoglobina Fetal/genética , Humanos , Estudios Longitudinales , Dolor , Polimorfismo de Nucleótido Simple
13.
Br J Haematol ; 194(2): 469-473, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34137022

RESUMEN

Albuminuria predicts kidney disease progression in individuals with sickle cell anaemia (SCA); however, earlier prediction of kidney disease with introduction of reno-protective therapies prior to the onset of albuminuria may attenuate disease progression. A genetic risk score (GRS) for SCA-related nephropathy may provide an improved one-time test for early identification of high-risk patients. We utilized a GRS from a recent, large, trans-ethnic meta-analysis to identify three single nucleotide polymorphisms that associate individually and in a GRS with time to first albuminuria episode in children with SCA.


Asunto(s)
Albuminuria/genética , Anemia de Células Falciformes/genética , Adolescente , Albuminuria/etiología , Anemia de Células Falciformes/complicaciones , Niño , Femenino , Predisposición Genética a la Enfermedad , Humanos , Estudios Longitudinales , Masculino , Polimorfismo de Nucleótido Simple , Factores de Riesgo
14.
IBRO Neurosci Rep ; 10: 130-135, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34179866

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized primarily by progressive loss of motor neurons. Although ALS occurs worldwide and the frequency and spectrum of identifiable genetic causes of disease varies across populations, very few studies have included African subjects. In addition to a hexanucleotide repeat expansion (RE) in C9orf72, the most common genetic cause of ALS in Europeans, REs in ATXN2, NIPA1 and ATXN1 have shown variable associations with ALS in Europeans. Intermediate range expansions in some of these genes (e.g. ATXN2) have been reported as potential risk factors, or phenotypic modifiers, of ALS. Pathogenic expansions in NOP56 cause spinocerebellar ataxia-36, which can present with prominent motor neuron degeneration. Here we compare REs in these genes in a cohort of Africans with ALS and population controls using whole genome sequencing data. Targeting genotyping of short tandem repeats at known loci within ATXN2, NIPA1, ATXN1 and NOP56 was performed using ExpansionHunter software in 105 Southern African (SA) patients with ALS. African population controls were from an in-house SA population control database (n = 25), the SA Human Genome Program (n = 24), the Simons Genome Diversity Project (n = 39) and the Illumina Polaris Diversity Cohort (IPDC) dataset (n = 50). We found intermediate RE alleles in ATXN2 (27-33 repeats) and ATXN1 (33-35 repeats), and NIPA1 long alleles (≥8 repeats) were rare in Africans, and not associated with ALS (p > 0.17). NOP56 showed no expanded alleles in either ALS or controls. We also compared the differences in allele distributions between the African and n = 50 European controls (from the IPDC). There was a statistical significant difference in the distribution of the REs in the ATXN1 between African and European controls (Chi-test p < 0.001), and NIPA1 showed proportionately more longer alleles (RE > 8) in Europeans vs. Africans (Fisher's p = 0.016). The distribution of RE alleles in ATXN2 and NOP56 were similar amongst African and European controls. In conclusion, repeat expansions in ATXN2, NIPA1 and ATXN1, which showed associations with ALS in Europeans, were not replicated in Southern Africans with ALS.

15.
EMBO Mol Med ; 13(1): e12595, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33270986

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine-learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post-mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Disfunción Cognitiva , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Disfunción Cognitiva/genética , Humanos , Aprendizaje Automático
16.
Blood Adv ; 4(18): 4347-4357, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32915977

RESUMEN

RHD and RHCE genes encode Rh blood group antigens and exhibit extensive single-nucleotide polymorphisms and chromosome structural changes in patients with sickle cell disease (SCD). RH variation can drive loss of antigen epitopes or expression of new epitopes, predisposing patients with SCD to Rh alloimmunization. Serologic antigen typing is limited to common Rh antigens, necessitating a genetic approach to detect variant antigen expression. We developed a novel algorithm termed RHtyper for RH genotyping from existing whole-genome sequencing (WGS) data. RHtyper determined RH genotypes in an average of 3.4 and 3.3 minutes per sample for RHD and RHCE, respectively. In a validation cohort consisting of 57 patients with SCD, RHtyper achieved 100% accuracy for RHD and 98.2% accuracy for RHCE, when compared with genotypes obtained by RH BeadChip and targeted molecular assays and after verification by Sanger sequencing and independent next-generation sequencing assays. RHtyper was next applied to WGS data from an additional 827 patients with SCD. In the total cohort of 884 patients, RHtyper identified 38 RHD and 28 RHCE distinct alleles, including a novel RHD DAU allele, RHD* 602G, 733C, 744T 1136T. RHtyper provides comprehensive and high-throughput RH genotyping from WGS data, facilitating deconvolution of the extensive RH genetic variation among patients with SCD. We have implemented RHtyper as a cloud-based public access application in DNAnexus (https://platform.dnanexus.com/app/RHtyper), enabling clinicians and researchers to perform RH genotyping with next-generation sequencing data.


Asunto(s)
Antígenos de Grupos Sanguíneos , Sistema del Grupo Sanguíneo Rh-Hr , Algoritmos , Alelos , Genotipo , Humanos , Sistema del Grupo Sanguíneo Rh-Hr/genética
17.
Sci Adv ; 6(26): eaba3231, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637605

RESUMEN

Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.

19.
Nat Neurosci ; 22(12): 1966-1974, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768050

RESUMEN

To discover novel genes underlying amyotrophic lateral sclerosis (ALS), we aggregated exomes from 3,864 cases and 7,839 ancestry-matched controls. We observed a significant excess of rare protein-truncating variants among ALS cases, and these variants were concentrated in constrained genes. Through gene level analyses, we replicated known ALS genes including SOD1, NEK1 and FUS. We also observed multiple distinct protein-truncating variants in a highly constrained gene, DNAJC7. The signal in DNAJC7 exceeded genome-wide significance, and immunoblotting assays showed depletion of DNAJC7 protein in fibroblasts in a patient with ALS carrying the p.Arg156Ter variant. DNAJC7 encodes a member of the heat-shock protein family, HSP40, which, along with HSP70 proteins, facilitates protein homeostasis, including folding of newly synthesized polypeptides and clearance of degraded proteins. When these processes are not regulated, misfolding and accumulation of aberrant proteins can occur and lead to protein aggregation, which is a pathological hallmark of neurodegeneration. Our results highlight DNAJC7 as a novel gene for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Estudios de Casos y Controles , Femenino , Variación Genética/genética , Humanos , Masculino
20.
Genome Res ; 29(9): 1555-1565, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31439692

RESUMEN

Variant interpretation in the era of massively parallel sequencing is challenging. Although many resources and guidelines are available to assist with this task, few integrated end-to-end tools exist. Here, we present the Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE), a web- and cloud-based platform for annotation, identification, and classification of variations in known or putative disease genes. Starting from a set of variants in variant call format (VCF), variants are annotated, ranked by putative pathogenicity, and presented for formal classification using a decision-support interface based on published guidelines from the American College of Medical Genetics and Genomics (ACMG). The system can accept files containing millions of variants and handle single-nucleotide variants (SNVs), simple insertions/deletions (indels), multiple-nucleotide variants (MNVs), and complex substitutions. PeCanPIE has been applied to classify variant pathogenicity in cancer predisposition genes in two large-scale investigations involving >4000 pediatric cancer patients and serves as a repository for the expert-reviewed results. PeCanPIE was originally developed for pediatric cancer but can be easily extended for use for nonpediatric cancers and noncancer genetic diseases. Although PeCanPIE's web-based interface was designed to be accessible to non-bioinformaticians, its back-end pipelines may also be run independently on the cloud, facilitating direct integration and broader adoption. PeCanPIE is publicly available and free for research use.


Asunto(s)
Biología Computacional/métodos , Mutación de Línea Germinal , Neoplasias/genética , Niño , Nube Computacional , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA