Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomech ; 169: 112133, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38744146

RESUMEN

Abnormal loading is thought to play a key role in the disease progression of cartilage, but our understanding of how cartilage compositional measurements respond to acute compressive loading in-vivo is limited. Ten healthy subjects were scanned at two timepoints (7 ± 3 days apart) with a 3 T magnetic resonance imaging (MRI) scanner. Scanning sessions included T1ρ and T2* acquisitions of each knee in two conditions: unloaded (traditional MRI setup) and loaded in compression at 40 % bodyweight as applied by an MRI-compatible loading device. T1ρ and T2* parameters were quantified for contacting cartilage (tibial and femoral) and non-contacting cartilage (posterior femoral condyle) regions. Significant effects of load were found in contacting regions for both T1ρ and T2*. The effect of load (loaded minus unloaded) in femoral contacting regions ranged from 4.1 to 6.9 ms for T1ρ, and 3.5 to 13.7 ms for T2*, whereas tibial contacting regions ranged from -5.6 to -1.7 ms for T1ρ, and -2.1 to 0.7 ms for T2*. Notably, the responses to load in the femoral and tibial cartilage revealed opposite effects. No significant differences were found in response to load between the two visits. This is the first study that analyzed the effects of acute loading on T1ρ and T2* measurements in human femoral and tibial cartilage separately. The results suggest the effect of acute compressive loading on T1ρ and T2* was: 1) opposite in the femoral and tibial cartilage; 2) larger in contacting regions than in non-contacting regions of the femoral cartilage; and 3) not different visit-to-visit.


Asunto(s)
Cartílago Articular , Fémur , Imagen por Resonancia Magnética , Tibia , Soporte de Peso , Humanos , Cartílago Articular/fisiología , Cartílago Articular/diagnóstico por imagen , Fémur/diagnóstico por imagen , Fémur/fisiología , Masculino , Adulto , Femenino , Imagen por Resonancia Magnética/métodos , Tibia/diagnóstico por imagen , Tibia/fisiología , Soporte de Peso/fisiología , Articulación de la Rodilla/fisiología , Articulación de la Rodilla/diagnóstico por imagen , Fuerza Compresiva/fisiología
2.
Gait Posture ; 111: 99-104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657478

RESUMEN

BACKGROUND: Impairments in real-world gait quality and quantity are multifaceted for individuals with multiple sclerosis (MS), encompassing mobility, cognition, and fear of falling. However, these factors are often examined independently, limiting insights into the combined contributions they make to real-world ambulation. RESEARCH QUESTION: How do mobility, cognition, and fear of falling contribute to real-world gait quality and quantity in individuals with MS? METHODS: Twenty individuals with MS underwent a series of cognitive assessments, including the Paced Auditory Serial Addition Test (PASAT), Symbol Digits Modalities Test (SDMT), Stroop Test, and the Selective Reminding Test (SRT). Participants also completed the Falls Efficacy Scale - International (FES-I) and walking impairment using the Patient Determined Disease Steps (PDDS). Following the in-lab session, participants wore an inertial sensor on their lower back and asked to go about their typical daily routines for three days. Metrics of gait speed, stride regularity, time spent walking, and total bouts were extracted from the real-world data. RESULTS: Significant correlations were found between both real-world gait speed and stride regularity and the SDMT, FES-I, and PDDS. Backward linear regression analysis was conducted for gait speed and stride regularity, with PDDS and SDMT included in the final model for both metrics. These variables explained 63% of the variance in gait speed and 69% of the variance in stride regularity. Results were not significant for gait quantity after adjusting for age and sex. SIGNIFICANCE: The study's results provide insight regarding the roles of cognition, walking impairment, and fear of falling on real-world ambulation. Deeper understanding of these contributions can inform the development of targeted interventions that aim to improve walking. Additionally, the absence of significant correlations between gait metrics, cognition, and fear of falling with gait quantity underscores the need for further research to identify factors that increased walking in this population.


Asunto(s)
Esclerosis Múltiple , Índice de Severidad de la Enfermedad , Velocidad al Caminar , Caminata , Humanos , Esclerosis Múltiple/fisiopatología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Velocidad al Caminar/fisiología , Caminata/fisiología , Accidentes por Caídas , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/etiología , Miedo , Cognición/fisiología , Velocidad de Procesamiento
3.
Med Eng Phys ; 114: 103968, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37030894

RESUMEN

Model-based tracking (MBT) is a time-consuming and semiautomatic approach, and thus subject to errors during the tracking process. The present study aimed primarily to quantify the effects that interpolation and intra-user variability associated with MBT have on the kinematic and arthrokinematic measurements in comparison to a gold standard radiostereometric analysis (RSA). Cadaveric knee specimens were imaged at 125 Hz while simulating standing, walking, jogging, and lunging motions. (Arthro)kinematic metrics were calculated via MBT without interpolation, MBT with two interpolation techniques when every fifth or tenth frame was analyzed, and RSA. Tracking the same activity multiple times affected (p-value, largest mean difference) the flexion-extension (FE) joint angle during walking (0.03, 0.6°), and the internal-external joint angle during jogging (0.048, -0.9°). Only during jogging for the FE joint angle was there an effect of interpolation (0.046, 0.3°). Neither tracking multiple times nor interpolation affected arthrokinematic metrics (contact path locations and excursions). The present study is the first to quantify the effects that intra-user variability and interpolation have on the (arthro)kinematic measurement accuracy using MBT. Results suggest interpolation may be used without sacrificing (arthro)kinematic outcome measurement accuracy and the errors associated with intra-user variability, while small, were larger than errors due to interpolation.


Asunto(s)
Articulación de la Rodilla , Rodilla , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Rodilla/diagnóstico por imagen , Caminata , Fenómenos Biomecánicos , Fluoroscopía/métodos , Rango del Movimiento Articular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...