Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 19(5): 1022-1032, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28467896

RESUMEN

In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.


Asunto(s)
Genoma Viral , Interacciones Huésped-Patógeno , Virus Vaccinia/fisiología , Replicación Viral , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad
2.
Cell Microbiol ; 11(8): 1236-53, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19438519

RESUMEN

Salmonella enterica are facultative intracellular bacterial pathogens that proliferate within host cells in a membrane-bounded compartment, the Salmonella-containing vacuole (SCV). Intracellular replication of Salmonella is mediated by bacterial effectors translocated on to the cytoplasmic face of the SCV membrane by a type III secretion system. Some of these effectors manipulate the host endocytic pathway, resulting in the formation in epithelial cells of tubules enriched in late endosomal markers, known as Salmonella-induced filaments (SIFs). However, much less is known about possible interference of Salmonella with the secretory pathway. Here, a small-interference RNA screen revealed that secretory carrier membrane proteins (SCAMPs) 2 and 3 contribute to the maintenance of SCVs in the Golgi region of HeLa cells. This is likely to reflect a function of SCAMPs in vacuolar membrane dynamics. Moreover, SCAMP3, which accumulates on the trans-Golgi network in uninfected cells, marked tubules induced by Salmonella effectors that overlapped with SIFs but which also comprised distinct tubules lacking late endosomal proteins. We propose that SCAMP3 tubules reflect a manipulation of specific post-Golgi trafficking that might allow Salmonella to acquire nutrients and membrane, or to control host immune responses.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella enterica/fisiología , Red trans-Golgi/metabolismo , Biomarcadores/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Microscopía Fluorescente , ARN Interferente Pequeño , Infecciones por Salmonella/virología , Salmonella enterica/citología , Salmonella enterica/patogenicidad , Vías Secretoras , Virulencia
3.
Trends Microbiol ; 15(11): 516-24, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17983751

RESUMEN

Salmonella enterica are facultative intracellular bacteria that cause intestinal and systemic diseases, and replicate within host cells in a membrane-bound compartment, the Salmonella-containing vacuole. Intravacuolar bacterial replication depends on spatiotemporal regulated interactions with host cell vesicular compartments. Recent studies have shown that type III secretion effector proteins control both the vacuolar membrane dynamics and intracellular positioning of bacterial vacuoles. The functions of these effectors, which are beginning to be understood, disclose a complex hijacking of host cell microtubule motors--kinesins and dynein--and regulators of their function, and suggest interactions with the Golgi complex. Here, we discuss current models describing the mode of action of Salmonella type III secretion effector proteins involved in these processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dineínas/metabolismo , Aparato de Golgi/microbiología , Cinesinas/metabolismo , Infecciones por Salmonella/microbiología , Salmonella/fisiología , Vacuolas/microbiología , Animales , Endosomas/metabolismo , Endosomas/microbiología , Aparato de Golgi/metabolismo , Humanos , Membranas Intracelulares/fisiología , Modelos Biológicos , Salmonella/patogenicidad , Vacuolas/metabolismo , Vacuolas/fisiología
4.
Cell Microbiol ; 9(10): 2517-29, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17578517

RESUMEN

Intracellular replication of Salmonella enterica occurs in membrane-bound compartments, called Salmonella-containing vacuoles (SCVs). Following invasion of epithelial cells, most SCVs migrate to a perinuclear region and replicate in close association with the Golgi network. The association of SCVs with the Golgi is dependent on the Salmonella-pathogenicity island-2 (SPI-2) type III secretion system (T3SS) effectors SseG, SseF and SifA. However, little is known about the dynamics of SCV movement. Here, we show that in epithelial cells, 2 h were required for migration of the majority of SCVs to within 5 microm from the microtubule organizing centre (MTOC), which is located in the same subcellular region as the Golgi network. This initial SCV migration was saltatory, bidirectional and microtubule-dependent. An intact Golgi, SseG and SPI-2 T3SS were dispensable for SCV migration to the MTOC, but were essential for maintenance of SCVs in that region. Live-cell imaging between 4 and 8 h post invasion revealed that the majority of wild-type SCVs displaced less than 2 microm in 20 min from their initial starting positions. In contrast, between 6 and 8 h post invasion the majority of vacuoles containing sseG, sseF or ssaV mutant bacteria displaced more than 2 microm in 20 min from their initial starting positions, with some undergoing large and dramatic movements. Further analysis of the movement of SCVs revealed that large displacements were a result of increased SCV speed rather than a change in their directionality, and that SseG influences SCV motility by restricting vacuole speed within the MTOC/Golgi region. SseG might function by tethering SCVs to Golgi-associated molecules, or by controlling microtubule motors, for example by inhibiting kinesin recruitment or promoting dynein recruitment.


Asunto(s)
Proteínas Bacterianas/fisiología , Células Epiteliales/fisiología , Islas Genómicas , Salmonella enterica/fisiología , Vacuolas/fisiología , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Salmonella enterica/genética , Vacuolas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...