Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Med Genet ; 60(12): 1245-1249, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37460203

RESUMEN

Albinism is a clinically and genetically heterogeneous group of conditions characterised by visual abnormalities and variable degrees of hypopigmentation. Multiple studies have demonstrated the clinical utility of genetic investigations in individuals with suspected albinism. Despite this, the variation in the provision of genetic testing for albinism remains significant. One key issue is the lack of a standardised approach to the analysis of genomic data from affected individuals. For example, there is variation in how different clinical genetic laboratories approach genotypes that involve incompletely penetrant alleles, including the common, 'hypomorphic' TYR c.1205G>A (p.Arg402Gln) [rs1126809] variant. Here, we discuss the value of genetic testing as a frontline diagnostic tool in individuals with features of albinism and propose a practice pattern for the analysis of genomic data from affected families.


Asunto(s)
Albinismo Oculocutáneo , Albinismo , Humanos , Albinismo/genética , Albinismo/diagnóstico , Albinismo Oculocutáneo/diagnóstico , Albinismo Oculocutáneo/genética , Pruebas Genéticas , Genotipo , Alelos
2.
J Med Genet ; 60(8): 810-818, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36669873

RESUMEN

BACKGROUND: Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS: We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS: EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION: Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders.


Asunto(s)
Bases de Datos Genéticas , Oftalmopatías , Pruebas Genéticas , Genoma Humano , Genómica , Oftalmopatías/genética , Humanos , Variación Genética
3.
Genome Med ; 14(1): 73, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35850704

RESUMEN

BACKGROUND: The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts. METHODS: We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an initial draft of the guidelines which were then extensively tested and reviewed by external groups. RESULTS: We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants. CONCLUSIONS: These recommendations aim to increase the number and range of non-coding region variants that can be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the discovery of novel disease mechanisms.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo , Genoma , Sistemas de Lectura Abierta , Secuencias Reguladoras de Ácidos Nucleicos
4.
J Med Genet ; 59(4): 385-392, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33766936

RESUMEN

BACKGROUND: Improving the clinical interpretation of missense variants can increase the diagnostic yield of genomic testing and lead to personalised management strategies. Currently, due to the imprecision of bioinformatic tools that aim to predict variant pathogenicity, their role in clinical guidelines remains limited. There is a clear need for more accurate prediction algorithms and this study aims to improve performance by harnessing structural biology insights. The focus of this work is missense variants in a subset of genes associated with X linked disorders. METHODS: We have developed a protein-specific variant interpreter (ProSper) that combines genetic and protein structural data. This algorithm predicts missense variant pathogenicity by applying machine learning approaches to the sequence and structural characteristics of variants. RESULTS: ProSper outperformed seven previously described tools, including meta-predictors, in correctly evaluating whether or not variants are pathogenic; this was the case for 11 of the 21 genes associated with X linked disorders that met the inclusion criteria for this study. We also determined gene-specific pathogenicity thresholds that improved the performance of VEST4, REVEL and ClinPred, the three best-performing tools out of the seven that were evaluated; this was the case in 11, 11 and 12 different genes, respectively. CONCLUSION: ProSper can form the basis of a molecule-specific prediction tool that can be implemented into diagnostic strategies. It can allow the accurate prioritisation of missense variants associated with X linked disorders, aiding precise and timely diagnosis. In addition, we demonstrate that gene-specific pathogenicity thresholds for a range of missense prioritisation tools can lead to an increase in prediction accuracy.


Asunto(s)
Genes Ligados a X , Mutación Missense , Algoritmos , Biología Computacional , Humanos , Mutación Missense/genética
5.
Brain Commun ; 3(3): fcab163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34423300

RESUMEN

Paediatric neurology syndromes are a broad and complex group of conditions with a large spectrum of clinical phenotypes. Joubert syndrome is a genetically heterogeneous neurological ciliopathy syndrome with molar tooth sign as the neuroimaging hallmark. We reviewed the clinical, radiological and genetic data for several families with a clinical diagnosis of Joubert syndrome but negative genetic analysis. We detected biallelic pathogenic variants in LAMA1, including novel alleles, in each of the four cases we report, thereby establishing a firm diagnosis of Poretti-Boltshauser syndrome. Analysis of brain MRI revealed cerebellar dysplasia and cerebellar cysts, associated with Poretti-Boltshauser syndrome and the absence of typical molar tooth signs. Using large UK patient cohorts, the relative prevalence of Joubert syndrome as a cause of intellectual disability was 0.2% and of Poretti-Boltshauser syndrome was 0.02%. We conclude that children with congenital brain disorders that mimic Joubert syndrome may have a delayed diagnosis due to poor recognition of key features on brain imaging and the lack of inclusion of LAMA1 on molecular genetic gene panels. We advocate the inclusion of LAMA1 genetic analysis on all intellectual disability and Joubert syndrome gene panels and promote a wider awareness of the clinical and radiological features of these syndromes.

7.
Otol Neurotol ; 41(4): 431-437, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32176120

RESUMEN

OBJECTIVE: USH2A-related disorders are characterised by genetic and phenotypic heterogeneity, and are associated with a spectrum of sensory deficits, ranging from deaf blindness to blindness with normal hearing. It has been previously proposed that the presence of specific USH2A alleles can be predictive of unaffected hearing. This study reports the clinical and genetic findings in a group of patients with USH2A-related disease and evaluates the validity of the allelic hierarchy model. PATIENTS AND INTERVENTION: USH2A variants from 27 adults with syndromic and nonsyndromic USH2A-related disease were analyzed according to a previously reported model of allelic hierarchy. The analysis was replicated on genotype-phenotype correlation information from 197 individuals previously reported in 2 external datasets. MAIN OUTCOME MEASURE: Genotype-phenotype correlations in USH2A-related disease. RESULTS: A valid allelic hierarchy model was observed in 93% of individuals with nonsyndromic USH2A-retinopathy (n = 14/15) and in 100% of patients with classic Usher syndrome type IIa (n = 8/8). Furthermore, when two large external cohorts of cases were combined, the allelic hierarchy model was valid across 85.7% (n = 78/91) of individuals with nonsyndromic USH2A-retinopathy and 95% (n = 123/129) of individuals with classic Usher syndrome type II (p = 0.012, χ test). Notably, analysis of all three patient datasets revealed that USH2A protein truncating variants were reported most frequently in individuals with hearing loss. CONCLUSION: Genetic testing results in individuals suspected to have an USH2A-related disorder have the potential to facilitate personalized audiological surveillance and rehabilitation pathways.


Asunto(s)
Síndromes de Usher , Adulto , Proteínas de la Matriz Extracelular/genética , Estudios de Asociación Genética , Genotipo , Humanos , Mutación , Síndromes de Usher/genética
8.
Genet Med ; 22(4): 745-751, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31848469

RESUMEN

PURPOSE: A key property to consider in all genetic tests is clinical utility, the ability of the test to influence patient management and health outcomes. Here we assess the current clinical utility of genetic testing in diverse pediatric inherited eye disorders (IEDs). METHODS: Two hundred one unrelated children (0-5 years old) with IEDs were ascertained through the database of the North West Genomic Laboratory Hub, Manchester, UK. The cohort was collected over a 7-year period (2011-2018) and included 74 children with bilateral cataracts, 8 with bilateral ectopia lentis, 28 with bilateral anterior segment dysgenesis, 32 with albinism, and 59 with inherited retinal disorders. All participants underwent panel-based genetic testing. RESULTS: The diagnostic yield of genetic testing for the cohort was 64% (ranging from 39% to 91% depending on the condition). The test result led to altered management (including preventing additional investigations or resulting in the introduction of personalized surveillance measures) in 33% of probands (75% for ectopia lentis, 50% for cataracts, 33% for inherited retinal disorders, 7% for anterior segment dysgenesis, 3% for albinism). CONCLUSION: Genetic testing helped identify an etiological diagnosis in the majority of preschool children with IEDs. This prevented additional unnecessary testing and provided the opportunity for anticipatory guidance in significant subsets of patients.


Asunto(s)
Catarata , Anomalías del Ojo , Pruebas Genéticas , Enfermedades de la Retina , Catarata/diagnóstico , Catarata/genética , Preescolar , Ojo , Anomalías del Ojo/genética , Humanos , Lactante , Recién Nacido , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/genética
9.
Eur J Hum Genet ; 28(5): 576-586, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31836858

RESUMEN

Thirty percent of all inherited retinal disease (IRD) is accounted for by conditions with extra-ocular features. This study aimed to establish the genetic diagnostic pick-up rate for IRD patients with one or more extra-ocular features undergoing panel-based screening in a clinical setting. One hundred and six participants, tested on a gene panel which contained both isolated and syndromic IRD genes, were retrospectively ascertained from the Manchester Genomic Diagnostics Laboratory database spanning 6 years (2012-2017). Phenotypic features were extracted from the clinical notes and classified according to Human Phenotype Ontology; all identified genetic variants were interpreted in accordance to the American College of Medical Genetics and Genomics guidelines. Overall, 49% (n = 52) of patients received a probable genetic diagnosis. A further 6% (n = 6) had a single disease-associated variant in an autosomal recessive disease-relevant gene. Fifty-two percent (n = 55) of patients had a clinical diagnosis at the time of testing. Of these, 71% (n = 39) received a probable genetic diagnosis. By contrast, for those without a provisional clinical diagnosis (n = 51), only 25% (n = 13) received a probable genetic diagnosis. The clinical diagnosis of Usher (n = 33) and Bardet-Biedl syndrome (n = 10) was confirmed in 67% (n = 22) and 80% (n = 8), respectively. The testing diagnostic rate in patients with clinically diagnosed multisystemic IRD conditions was significantly higher than those without one (71% versus 25%; p value < 0.001). The lower pick-up rate in patients without a clinical diagnosis suggests that panel-based approaches are unlikely to be the most effective means of achieving a molecular diagnosis for this group. Here, we suggest that genome-wide approaches (whole exome or genome) are more appropriate.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Pruebas Genéticas/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Enfermedades de la Retina/genética , Análisis de Secuencia de ADN/normas , Adolescente , Adulto , Anciano , Niño , Preescolar , Enfermedades Hereditarias del Ojo/diagnóstico , Femenino , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Enfermedades de la Retina/diagnóstico , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos , Síndrome
10.
Sci Rep ; 9(1): 16576, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719542

RESUMEN

Individuals who have ocular features of albinism and skin pigmentation in keeping with their familial background present a considerable diagnostic challenge. Timely diagnosis through genomic testing can help avert diagnostic odysseys and facilitates accurate genetic counselling and tailored specialist management. Here, we report the clinical and gene panel testing findings in 12 children with presumed ocular albinism. A definitive molecular diagnosis was made in 8/12 probands (67%) and a possible molecular diagnosis was identified in a further 3/12 probands (25%). TYR was the most commonly mutated gene in this cohort (75% of patients, 9/12). A disease-causing TYR haplotype comprised of two common, functional polymorphisms, TYR c.[575 C > A;1205 G > A] p.[(Ser192Tyr);(Arg402Gln)], was found to be particularly prevalent. One participant had GPR143-associated X-linked ocular albinism and another proband had biallelic variants in SLC38A8, a glutamine transporter gene associated with foveal hypoplasia and optic nerve misrouting without pigmentation defects. Intriguingly, 2/12 individuals had a single, rare, likely pathogenic variant in each of TYR and OCA2 - a significant enrichment compared to a control cohort of 4046 individuals from the 100,000 genomes project pilot dataset. Overall, our findings highlight that panel-based genetic testing is a clinically useful test with a high diagnostic yield in children with partial/ocular albinism.


Asunto(s)
Albinismo/genética , Variación Genética , Adolescente , Albinismo/diagnóstico , Niño , Preescolar , Estudios de Cohortes , Ojo/patología , Femenino , Genotipo , Humanos , Lactante , Masculino , Pigmentación de la Piel/genética
11.
Eur J Hum Genet ; 27(9): 1326-1340, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235867

RESUMEN

This article is an update of the best practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes published in 2010 in BMC Medical Genetics [1]. The update takes into account developments in terms of techniques, differential diagnoses and (especially) reporting standards. It highlights the advantages and disadvantages of each method and moreover, is meant to facilitate the interpretation of the obtained results - leading to improved standardised reports.


Asunto(s)
Síndrome de Angelman/diagnóstico , Síndrome de Angelman/genética , Técnicas de Diagnóstico Molecular , Guías de Práctica Clínica como Asunto , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Metilación de ADN , Diagnóstico Diferencial , Manejo de la Enfermedad , Epigénesis Genética , Femenino , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Variación Genética , Humanos , Embarazo , Diagnóstico Prenatal , Derivación y Consulta
12.
Lancet ; 393(10173): 747-757, 2019 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-30712880

RESUMEN

BACKGROUND: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION: WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING: UK Department of Health and Social Care and The Wellcome Trust.


Asunto(s)
Cariotipo Anormal/estadística & datos numéricos , Anomalías Congénitas/genética , Secuenciación del Exoma/estadística & datos numéricos , Desarrollo Fetal/genética , Feto/anomalías , Cariotipo Anormal/embriología , Aborto Eugénico/estadística & datos numéricos , Aborto Espontáneo/epidemiología , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/epidemiología , Variaciones en el Número de Copia de ADN/genética , Femenino , Feto/diagnóstico por imagen , Humanos , Recién Nacido , Nacimiento Vivo/epidemiología , Masculino , Medida de Translucencia Nucal , Padres , Muerte Perinatal/etiología , Embarazo , Estudios Prospectivos , Mortinato/epidemiología , Secuenciación del Exoma/métodos
13.
Am J Med Genet A ; 176(7): 1637-1640, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29704308

RESUMEN

Cardiofaciocutaneous (CFC) syndrome is a RASopathy characterized by intellectual disability, congenital heart defects, a characteristic facial appearance, gastro-intestinal complications, ectodermal abnormalities and growth failure. The RASopathies result from germline mutations in the Ras/Mitogen-activated-protein-kinase (MAPK) pathway. CFC is associated with mutations in BRAF, KRAS, MEK1 and MEK2. CFC has been considered a "sporadic" disorder, with minimal recurrence risk to siblings. In recent years, vertical transmission of CFC has been seen in mutations involving the MEK2 and KRAS genes, but has not previously been reported with BRAF mutations. Two brothers with clinical features of CFC and mutations in BRAF (c.770A > G, p.Gln257Arg) are described. Neither parent (both phenotypically normal) had the BRAF mutation in their leukocyte DNA. Although this mutation is one of the most common mutations in CFC, to our knowledge, this is the first molecularly confirmed BRAF mutation causing CFC in siblings. This observation also likely represents the first description of germ cell mosaicism in CFC and so it is important to provide optimal genetic counselling to families regarding the risk of reoccurrence.


Asunto(s)
Displasia Ectodérmica/genética , Displasia Ectodérmica/patología , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Gónadas/metabolismo , Gónadas/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Mosaicismo , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Adulto , Facies , Femenino , Humanos , Recién Nacido , Masculino , Padres , Fenotipo , Hermanos
14.
J Med Genet ; 55(2): 114-121, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29074561

RESUMEN

BACKGROUND: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Distrofias Retinianas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Algoritmos , Proteínas del Citoesqueleto , Duplicación de Gen , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Proteínas de la Membrana/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Flujo de Trabajo
15.
Mol Ther ; 25(8): 1854-1865, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28549772

RESUMEN

X-linked retinitis pigmentosa (XLRP) is generally a severe form of retinitis pigmentosa, a neurodegenerative, blinding disorder of the retina. 70% of XLRP cases are due to mutations in the retina-specific isoform of the gene encoding retinitis pigmentosa GTPase regulator (RPGRORF15). Despite successful RPGRORF15 gene replacement with adeno-associated viral (AAV) vectors being established in a number of animal models of XLRP, progression to human trials has not yet been possible. The inherent sequence instability in the purine-rich region of RPGRORF15 (which contains highly repetitive nucleotide sequences) leads to unpredictable recombination errors during viral vector cloning. While deleted RPGR may show some efficacy in animal models, which have milder disease, the therapeutic effect of a mutated RPGR variant in patients with XLRP cannot be predicted. Here, we describe an optimized gene replacement therapy for human XLRP disease using an AAV8 vector that reliably and consistently produces the full-length correct RPGR protein. The glutamylation pattern in the RPGR protein derived from the codon-optimized sequence is indistinguishable from the wild-type variant, implying that codon optimization does not significantly alter post-translational modification. The codon-optimized sequence has superior stability and expression levels in vitro. Significantly, when delivered by AAV8 vector and driven by the rhodopsin kinase promoter, the codon-optimized RPGR rescues the disease phenotype in two relevant animal models (Rpgr-/y and C57BL/6JRd9/Boc) and shows good safety in C57BL6/J wild-type mice. This work provides the basis for clinical trial development to treat patients with XLRP caused by RPGR mutations.


Asunto(s)
Proteínas Portadoras/genética , Codón , Dependovirus/genética , Proteínas del Ojo/genética , Genes Ligados a X , Terapia Genética , Vectores Genéticos/genética , Retinitis Pigmentosa/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica , Ratones , Mutación , Fenotipo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Estabilidad del ARN , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/terapia , Transducción Genética , Transgenes
16.
Arch Dis Child ; 102(11): 1019-1029, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28468868

RESUMEN

BACKGROUND: Inborn errors of metabolism (IEMs) underlie a substantial proportion of paediatric disease burden but their genetic diagnosis can be challenging using the traditional approaches. METHODS: We designed and validated a next-generation sequencing (NGS) panel of 226 IEM genes, created six overlapping phenotype-based subpanels and tested 102 individuals, who presented clinically with suspected childhood-onset IEMs. RESULTS: In 51/102 individuals, NGS fully or partially established the molecular cause or identified other actionable diagnoses. Causal mutations were identified significantly more frequently when the biochemical phenotype suggested a specific IEM or a group of IEMs (p<0.0001), demonstrating the pivotal role of prior biochemical testing in guiding NGS analysis. The NGS panel helped to avoid further invasive, hazardous, lengthy or expensive investigations in 69% individuals (p<0.0001). Additional functional testing due to novel or unexpected findings had to be undertaken in only 3% of subjects, demonstrating that the use of NGS does not significantly increase the burden of subsequent follow-up testing. Even where a molecular diagnosis could not be achieved, NGS-based approach assisted in the management and counselling by reducing the likelihood of a high-penetrant genetic cause. CONCLUSION: NGS has significant clinical utility for the diagnosis of IEMs. Biochemical testing and NGS analysis play complementary roles in the diagnosis of IEMs. Incorporating NGS into the diagnostic algorithm of IEMs can improve the accuracy of diagnosis.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Errores Innatos del Metabolismo/diagnóstico , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Errores Innatos del Metabolismo/genética , Adulto Joven
17.
Eur J Hum Genet ; 25(6): 719-724, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28378820

RESUMEN

Although a common cause of disease, copy number variants (CNVs) have not routinely been identified from next-generation sequencing (NGS) data in a clinical context. This study aimed to examine the sensitivity and specificity of a widely used software package, ExomeDepth, to identify CNVs from targeted NGS data sets. We benchmarked the accuracy of CNV detection using ExomeDepth v1.1.6 applied to targeted NGS data sets by comparison to CNV events detected through whole-genome sequencing for 25 individuals and determined the sensitivity and specificity of ExomeDepth applied to these targeted NGS data sets to be 100% and 99.8%, respectively. To define quality assurance metrics for CNV surveillance through ExomeDepth, we undertook simulation of single-exon (n=1000) and multiple-exon heterozygous deletion events (n=1749), determining a sensitivity of 97% (n=2749). We identified that the extent of sequencing coverage, the inter- and intra-sample variability in the depth of sequencing coverage and the composition of analysis regions are all important determinants of successful CNV surveillance through ExomeDepth. We then applied these quality assurance metrics during CNV surveillance for 140 individuals across 12 distinct clinical areas, encompassing over 500 potential rare disease diagnoses. All 140 individuals lacked molecular diagnoses after routine clinical NGS testing, and by application of ExomeDepth, we identified 17 CNVs contributing to the cause of a Mendelian disorder. Our findings support the integration of CNV detection using ExomeDepth v1.1.6 with routine targeted NGS diagnostic services for Mendelian disorders. Implementation of this strategy increases diagnostic yields and enhances clinical care.


Asunto(s)
Variaciones en el Número de Copia de ADN , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Exoma , Pruebas Genéticas/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/normas
18.
Ophthalmology ; 124(7): 985-991, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28341476

RESUMEN

PURPOSE: To assess the clinical usefulness of genetic testing in a pediatric population with inherited retinal disease (IRD). DESIGN: Single-center retrospective case series. PARTICIPANTS: Eighty-five unrelated children with a diagnosis of isolated or syndromic IRD who were referred for clinical genetic testing between January 2014 and July 2016. METHODS: Participants underwent a detailed ophthalmic examination, accompanied by electrodiagnostic testing (EDT) and dysmorphologic assessment where appropriate. Ocular and extraocular features were recorded using Human Phenotype Ontology terms. Subsequently, multigene panel testing (105 or 177 IRD-associated genes) was performed in an accredited diagnostic laboratory, followed by clinical variant interpretation. MAIN OUTCOME MEASURES: Diagnostic yield and clinical usefulness of genetic testing. RESULTS: Overall, 78.8% of patients (n = 67) received a probable molecular diagnosis; 7.5% (n = 5) of these had autosomal dominant disease, 25.4% (n = 17) had X-linked disease, and 67.2% (n = 45) had autosomal recessive disease. In a further 5.9% of patients (n = 5), a single heterozygous ABCA4 variant was identified; all these participants had a spectrum of clinical features consistent with ABCA4 retinopathy. Most participants (84.7%; n = 72) had undergone EDT and 81.9% (n = 59) of these patients received a probable molecular diagnosis. The genes most frequently mutated in the present cohort were CACNA1F and ABCA4, accounting for 14.9% (n = 10) and 11.9% (n = 8) of diagnoses respectively. Notably, in many cases, genetic testing helped to distinguish stationary from progressive IRD subtypes and to establish a precise diagnosis in a timely fashion. CONCLUSIONS: Multigene panel testing pointed to a molecular diagnosis in 84.7% of children with IRD. The diagnostic yield in the study population was significantly higher compared with that in previously reported unselected IRD cohorts. Approaches similar to the one described herein are expected to become a standard component of care in pediatric ophthalmology. We propose the introduction of genetic testing early in the diagnostic pathway in children with clinical and/or electrophysiologic findings, suggestive of IRD.


Asunto(s)
Proteínas del Ojo/genética , Estudios de Asociación Genética/métodos , Pruebas Genéticas/métodos , Técnicas de Diagnóstico Molecular/métodos , Distrofias Retinianas/genética , Adolescente , Niño , Proteínas del Ojo/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/metabolismo , Estudios Retrospectivos
19.
Orphanet J Rare Dis ; 11(1): 125, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27628848

RESUMEN

BACKGROUND: Although the majority of small in-frame insertions/deletions (indels) has no/little affect on protein function, a small subset of these changes has been causally associated with genetic disorders. Notably, the molecular mechanisms and frequency by which they give rise to disease phenotypes remain largely unknown. The aim of this study is to provide insights into the role of in-frame indels (≤21 nucleotides) in two genetically heterogeneous eye disorders. RESULTS: One hundred eighty-one probands with childhood cataracts and 486 probands with retinal dystrophy underwent multigene panel testing in a clinical diagnostic laboratory. In-frame indels were collected and evaluated both clinically and in silico. Variants that could be modeled in the context of protein structure were identified and analysed using integrative structural modeling. Overall, 55 small in-frame indels were detected in 112 of 667 probands (16.8 %); 17 of these changes were novel to this study and 18 variants were reported clinically. A reliable model of the corresponding protein sequence could be generated for 8 variants. Structural modeling indicated a diverse range of molecular mechanisms of disease including disruption of secondary and tertiary protein structure and alteration of protein-DNA binding sites. CONCLUSIONS: In childhood cataract and retinal dystrophy subjects, one small in-frame indel is clinically reported in every ~37 individuals tested. The clinical utility of computational tools evaluating these changes increases when the full complexity of the involved molecular mechanisms is embraced.


Asunto(s)
Oftalmopatías/genética , Mutación INDEL/genética , Sistemas de Lectura/genética , Catarata/genética , Biología Computacional , Humanos , Distrofias Retinianas/genética
20.
J Med Genet ; 53(11): 761-767, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27208204

RESUMEN

BACKGROUND: Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous set of disorders, for which diagnostic second-generation sequencing (next-generation sequencing, NGS) services have been developed worldwide. METHODS: We present the molecular findings of 537 individuals referred to a 105-gene diagnostic NGS test for IRDs. We assess the diagnostic yield, the spectrum of clinical referrals, the variant analysis burden and the genetic heterogeneity of IRD. We retrospectively analyse disease-causing variants, including an assessment of variant frequency in Exome Aggregation Consortium (ExAC). RESULTS: Individuals were referred from 10 clinically distinct classifications of IRD. Of the 4542 variants clinically analysed, we have reported 402 mutations as a cause or a potential cause of disease in 62 of the 105 genes surveyed. These variants account or likely account for the clinical diagnosis of IRD in 51% of the 537 referred individuals. 144 potentially disease-causing mutations were identified as novel at the time of clinical analysis, and we further demonstrate the segregation of known disease-causing variants among individuals with IRD. We show that clinically analysed variants indicated as rare in dbSNP and the Exome Variant Server remain rare in ExAC, and that genes discovered as a cause of IRD in the post-NGS era are rare causes of IRD in a population of clinically surveyed individuals. CONCLUSIONS: Our findings illustrate the continued powerful utility of custom-gene panel diagnostic NGS tests for IRD in the clinic, but suggest clear future avenues for increasing diagnostic yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA