Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Biomater Res ; 28: 0028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715912

RESUMEN

The field of immunotherapy, particularly immune checkpoint blockade (ICB), holds immense potential in mitigating the progression of cancer. However, the challenges of insufficient tumor antigen production and the immunosuppressive state in the tumor microenvironment substantially impede patients from deriving benefits. In this research, we present a tumor-microenvironment-modulation manganese-based nanosystem, PEG-MnMOF@PTX, aiming to improve the responsiveness of ICB. Under acidic conditions, the released Mn2+ accomplishes multiple objectives. It generates toxic hydroxyl radicals (•OH), together with the released paclitaxel (PTX), inducing immunogenic cell death of tumor cells and normalizing tumor blood vessels. Concurrently, it facilitates the in situ generation of oxygen (O2) from hydrogen peroxide (H2O2), ameliorating the microenvironmental immunosuppression and increasing the efficacy of immunotherapy. In addition, this study demonstrates that PEG-MnMOF@PTX can promote the maturation of dendritic cells and augment the infiltration of cytotoxic T lymphocytes through activation of the cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and interferon gene stimulator (STING) pathways, namely cGAS-STING pathways, thereby heightening the sensitivity to ICB immunotherapy. The findings of this study present a novel paradigm for the progress in cancer immunotherapy.

2.
Biomaterials ; 308: 122570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636133

RESUMEN

Metallic biomaterials activate tumor ferroptosis by increasing oxidative stress, but their efficacy is severely limited in tumor microenvironment. Although interferon gamma (IFN-γ) can promote tumor ferroptosis sensitivity by inhibiting the antioxidant system and promoting lipid accumulation, this effect limited by the lack of IFN-γ accumulation in tumors. Herein, we report a near-infrared (NIR)-responsive HCuS nanocomposite (HCuS-PE@TSL-tlyp-1) that can stimulate immunogenic cell death (ICD)-mediated IFN-γ secretion through exogenous oxidative stress, thereby achieving cascaded ferrotherapy by mutually reinforcing ferroptosis and systemic immunity. Upon laser irradiation, the dissolution of the thermal coating, and the introduction of Cu ions and piperazine-erastin (PE) simultaneously induce oxidative stress by reactive oxygen species (ROS)/lipid peroxide (LPO) accumulation and deplete cystine-glutamate transporter (xCT)/GSH. The onset of oxidative stress-mediated ferroptosis is thus achieved, and ICD is triggered, significantly promoting cytotoxic T-cell (CTL) infiltration for IFN-γ secretion. Furthermore, IFN-γ induces immunogenic tumor ferroptosis by inhibiting xCT-antioxidant pathways and enhancing the ACSL4-fatty acid recruitment pathway, which further promotes sensitivity to ferroptosis in cells. These HCuS nanocomposites combined with aPD-L1 effectively in inhibiting tumor metastasis and recurrence. Importantly, these cascade ferrotherapy results broadens the application of HCuS biomaterials.


Asunto(s)
Cobre , Ferroptosis , Interferón gamma , Liposomas , Ferroptosis/efectos de los fármacos , Animales , Cobre/química , Cobre/farmacología , Interferón gamma/metabolismo , Ratones , Liposomas/química , Nanocompuestos/química , Línea Celular Tumoral , Muerte Celular Inmunogénica/efectos de los fármacos , Rayos Infrarrojos , Humanos , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
3.
J Nanobiotechnology ; 22(1): 110, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481281

RESUMEN

BACKGROUND: Breast cancer ranks first among malignant tumors, of which triple-negative breast cancer (TNBC) is characterized by its highly invasive behavior and the worst prognosis. Timely diagnosis and precise treatment of TNBC are substantially challenging. Abnormal tumor vessels play a crucial role in TNBC progression and treatment. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis, while effective NO delivery can normalize the tumor vasculature. Accordingly, we have proposed here a tumor vascular microenvironment remodeling strategy based on NO-induced vessel normalization and extracellular matrix collagen degradation with multimodality imaging-guided nanoparticles against TNBC called DNMF/PLGA. RESULTS: Nanoparticles were synthesized using a chemotherapeutic agent doxorubicin (DOX), a NO donor L-arginine (L-Arg), ultrasmall spinel ferrites (MnFe2O4), and a poly (lactic-co-glycolic acid) (PLGA) shell. Nanoparticle distribution in the tumor was accurately monitored in real-time through highly enhanced magnetic resonance imaging and photoacoustic imaging. Near-infrared irradiation of tumor cells revealed that MnFe2O4 catalyzes the production of a large amount of reactive oxygen species (ROS) from H2O2, resulting in a cascade catalysis of L-Arg to trigger NO production in the presence of ROS. In addition, DOX activates niacinamide adenine dinucleotide phosphate oxidase to generate and supply H2O2. The generated NO improves the vascular endothelial cell integrity and pericellular contractility to promote vessel normalization and induces the activation of endogenous matrix metalloproteinases (mainly MMP-1 and MMP-2) so as to promote extravascular collagen degradation, thereby providing an auxiliary mechanism for efficient nanoparticle delivery and DOX penetration. Moreover, the chemotherapeutic effect of DOX and the photothermal effect of MnFe2O4 served as a chemo-hyperthermia synergistic therapy against TNBC. CONCLUSION: The two therapeutic mechanisms, along with an auxiliary mechanism, were perfectly combined to enhance the therapeutic effects. Briefly, multimodality image-guided nanoparticles provide a reliable strategy for the potential application in the fight against TNBC.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Óxido Nítrico , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Doxorrubicina/farmacología , Fototerapia/métodos , Colágeno , Línea Celular Tumoral , Microambiente Tumoral
4.
J Nanobiotechnology ; 22(1): 95, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448959

RESUMEN

BACKGROUND: The prognosis for hepatocellular carcinoma (HCC) remains suboptimal, characterized by high recurrence and metastasis rates. Although metalloimmunotherapy has shown potential in combating tumor proliferation, recurrence and metastasis, current apoptosis-based metalloimmunotherapy fails to elicit sufficient immune response for HCC. RESULTS: A smart responsive bimetallic nanovaccine was constructed to induce immunogenic cell death (ICD) through pyroptosis and enhance the efficacy of the cGAS-STING pathway. The nanovaccine was composed of manganese-doped mesoporous silica as a carrier, loaded with sorafenib (SOR) and modified with MIL-100 (Fe), where Fe3+, SOR, and Mn2+ were synchronized and released into the tumor with the help of the tumor microenvironment (TME). Afterward, Fe3+ worked synergistically with SOR-induced immunogenic pyroptosis (via both the classical and nonclassical signaling pathways), causing the outflow of abundant immunogenic factors, which contributes to dendritic cell (DC) maturation, and the exposure of double-stranded DNA (dsDNA). Subsequently, the exposed dsDNA and Mn2+ jointly activated the cGAS-STING pathway and induced the release of type I interferons, which further led to DC maturation. Moreover, Mn2+-related T1 magnetic resonance imaging (MRI) was used to visually evaluate the smart response functionality of the nanovaccine. CONCLUSION: The utilization of metallic nanovaccines to induce pyroptosis-mediated immune activation provides a promising paradigm for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/terapia , Nanovacunas , Carcinoma Hepatocelular/terapia , Piroptosis , Inmunoterapia , Microambiente Tumoral
5.
ACS Appl Mater Interfaces ; 16(14): 17285-17299, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38539044

RESUMEN

Cytoprotective autophagy and an immunosuppressive tumor microenvironment (TME) are two positive promoters for tumor proliferation and metastasis that severely hinder therapeutic efficacy. Inhibiting autophagy and reconstructing TME toward macrophage activation simultaneously are of great promise for effective tumor elimination, yet are still a huge challenge. Herein, a kind of dendrimer-based proton sponge nanocomposites was designed and constructed for tumor chemo/chemodynamic/immunotherapy through autophagy inhibition-promoted cell apoptosis and macrophage repolarization-enhanced immune response. These obtained nanocomposites contain a proton sponge G5AcP dendrimer, a Fenton-like agent Cu(II), and chemical drug doxorubicin (DOX). When accumulated in tumor regions, G5AcP can act as an immunomodulator to realize deacidification-promoted macrophage repolarization toward antitumoral type, which then secretes inflammatory cytokines to activate T cells. They also regulate intracellular lysosomal pH to inhibit cytoprotective autophagy. The released Cu(II) and DOX can induce aggravated damage through a Fenton-like reaction and chemotherapeutic effect in this autophagy-inhibition condition. Tumor-associated antigens are released from these dying tumor cells to promote the maturity of dendritic cells, further activating T cells. Effective tumor elimination can be achieved by this dendrimer-based therapeutic strategy, providing significant guidance for the design of a promising antitumor nanomedicine.


Asunto(s)
Dendrímeros , Nanocompuestos , Neoplasias , Humanos , Protones , Línea Celular Tumoral , Dendrímeros/farmacología , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Autofagia , Inmunidad , Macrófagos , Nanocompuestos/uso terapéutico , Apoptosis , Microambiente Tumoral
6.
Adv Sci (Weinh) ; 11(15): e2306031, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342617

RESUMEN

Overproduction of reactive oxygen species (ROS), metal ion accumulation, and tricarboxylic acid cycle collapse are crucial factors in mitochondria-mediated cell death. However, the highly adaptive nature and damage-repair capabilities of malignant tumors strongly limit the efficacy of treatments based on a single treatment mode. To address this challenge, a self-reinforced bimetallic Mito-Jammer is developed by incorporating doxorubicin (DOX) and calcium peroxide (CaO2) into hyaluronic acid (HA) -modified metal-organic frameworks (MOF). After cellular, Mito-Jammer dissociates into CaO2 and Cu2+ in the tumor microenvironment. The exposed CaO2 further yields hydrogen peroxide (H2O2) and Ca2+ in a weakly acidic environment to strengthen the Cu2+-based Fenton-like reaction. Furthermore, the combination of chemodynamic therapy and Ca2+ overload exacerbates ROS storms and mitochondrial damage, resulting in the downregulation of intracellular adenosine triphosphate (ATP) levels and blocking of Cu-ATPase to sensitize cuproptosis. This multilevel interaction strategy also activates robust immunogenic cell death and suppresses tumor metastasis simultaneously. This study presents a multivariate model for revolutionizing mitochondria damage, relying on the continuous retention of bimetallic ions to boost cuproptosis/immunotherapy in cancer.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Adenosina Trifosfato , Muerte Celular , Mitomicina , Microambiente Tumoral
7.
ACS Nano ; 18(6): 4886-4902, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38295159

RESUMEN

Currently, inadequate early diagnostic methods hinder the prompt treatment of patients with heart failure and myocardial fibrosis. Magnetic resonance imaging is the gold standard noninvasive diagnostic method; however, its effectiveness is constrained by low resolution and challenges posed by certain patients who cannot undergo the procedure. Although enhanced computed tomography (CT) offers high resolution, challenges arise owing to the unclear differentiation between fibrotic and normal myocardial tissue. Furthermore, although echocardiography is real-time and convenient, it lacks the necessary resolution for detecting fibrotic myocardium, thus limiting its value in fibrosis detection. Inspired by the postinfarction accumulation of collagen types I and III, we developed a collagen-targeted multimodal imaging nanoplatform, CNA35-GP@NPs, comprising lipid nanoparticles (NPs), encapsulating gold nanorods (GNRs) and perfluoropentane (PFP). This platform facilitated ultrasound/photoacoustic/CT imaging of postinfarction cardiac fibrosis in a rat model of myocardial infarction (MI). The surface-modified peptide CNA35 exhibited excellent collagen fiber targeting. The strong near-infrared light absorption and substantial X-ray attenuation of the nanoplatform rendered it suitable for photoacoustic and CT imaging. In the rat model of MI, our study demonstrated that CNA35-GNR/PFP@NPs (CNA35-GP@NPs) achieved photoacoustic, ultrasound, and enhanced CT imaging of the fibrotic myocardium. Notably, the photoacoustic signal intensity positively correlated with the severity of myocardial fibrosis. Thus, this study presents a promising approach for accurately detecting and treating the fibrotic myocardium.


Asunto(s)
Infarto del Miocardio , Ratas , Humanos , Animales , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocardio/patología , Fibrosis , Colágeno , Imagen Multimodal/métodos , Imagen Molecular
8.
J Clin Ultrasound ; 52(1): 68-77, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907965

RESUMEN

Due to lymphocytic infiltration of the salivary and lacrimal glands, Sjogren's syndrome (SS), a systemic autoimmune illness that mostly affects the exocrine glands, causes dry mouth (xerostomia) and dry eyes (xerophthalmia). Additionally, SS is associated with various comorbidities such as cardiovascular diseases, infections, musculoskeletal diseases, and cancers. Among patients with SS, xerophthalmia frequently arises as a complication, leading to insufficient tear production or rapid tear evaporation, thereby causing discomfort, irritation, and a gritty sensation in the eyes. This article aims to examine recent advancements in the imaging of the lacrimal gland in Sjögren's syndrome and briefly discusses the utilization of various imaging examinations for the lacrimal gland in this particular disease.


Asunto(s)
Aparato Lagrimal , Síndrome de Sjögren , Xeroftalmia , Xerostomía , Humanos , Síndrome de Sjögren/complicaciones , Síndrome de Sjögren/diagnóstico por imagen , Aparato Lagrimal/diagnóstico por imagen , Diagnóstico por Imagen
9.
Int J Cardiovasc Imaging ; 40(3): 613-623, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38108983

RESUMEN

Stroke incidence is the most severe complication associated with atrial fibrillation (AF), and the most common site of thrombus formation in AF patients is the left atrial appendage (LAA). This study was developed to use two-dimensional speckle tracking imaging (2D-STI) to explore associations between LAA strain/strain rate and stroke incidence and to evaluate the value of utilizing LAA strain and strain rate values to support the stratification of nonvalvular AF (NVAF) patients based on stroke risk. A total of 486 AF patients who had undergone transesophageal echocardiography to exclude potential intracardiac thrombosis between March 2021 and November 2022 were consecutively enrolled. Patients meeting the inclusion criteria were separated into two groups according to their history of stroke/transient ischemic attack (TIA). LAA strain and strain rate values in these patients were measured via 2D-STI. Multivariable logistic regression analysis was employed to determine independent risk factors for the construction of a combined predictive model. Of the 333 analyzed patients (134 females, aged 65 (56,72) years), 39 (11.71%, 39/333) had a history of stroke at the time of evaluation. Multivariate logistic regression analysis demonstrated that nonparoxysmal AF, CHA2DS2VASc score, LAA thrombus/spontaneous echo contrast (SEC), LAA strain, and strain rate were all predictors of stroke incidence among NVAF patients. The combined predictive model demonstrated excellent discriminative ability, with an AUC of 0.91 (95%CI 0.87-0.95, P < 0.001), and a sensitivity and specificity of 79.49% and 89.46%, respectively. The Hosmer-Lemeshow test confirmed good calibration, yielding a value of 0.98. Comparative decision curve analysis showed that the model provided superior net benefits compared to the CHA2DS2VASc score. Furthermore, the model exhibited improved predictive performance and reclassification for stroke when compared to the CHA2DS2VASc score (AUC 0.91 vs. 0.88, Z = 2.32, P = 0.02), accompanied by a significant increase in the net reclassification index (+ 5.44%, P < 0.001) and integrated discrimination improvement (8.21%, P < 0.001). These data demonstrate that LAA strain and strain rate, as measured via 2D-STI, can offer value when assessing LAA function in AF patients, potentially providing further predictive value to extant clinical risk scoring strategies.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Cardiopatías , Accidente Cerebrovascular , Trombosis , Femenino , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico por imagen , Apéndice Atrial/diagnóstico por imagen , Valor Predictivo de las Pruebas , Ecocardiografía Transesofágica/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Trombosis/diagnóstico por imagen , Trombosis/epidemiología , Trombosis/etiología , Factores de Riesgo
10.
Biomater Sci ; 11(19): 6674, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37661911

RESUMEN

Expression of Concern for 'Low-intensity focused ultrasound (LIFU)-activated nanodroplets as a theranostic agent for noninvasive cancer molecular imaging and drug delivery' by Jianxin Liu et al., Biomater. Sci., 2018, 6, 2838-2849, https://doi.org/10.1039/C8BM00726H.

11.
J Nanobiotechnology ; 21(1): 311, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660123

RESUMEN

Graphdiyne has excellent potential due to its enzymatic properties. Metal-free sulfur-doped Graphdiyne (S-GDY) has piezoelectric characteristics, and ultrasonic excitation of S-GDY enhances peroxidase activity. It can turn hydrogen peroxide into toxic hydroxyl radicals and induce apoptosis in 4T1 cells. More importantly, the ultrasound (US) enhanced nanozyme induced 4T1 cell ferroptosis by promoting an imbalanced redox reaction due to glutathione depletion and glutathione peroxidase 4 inactivation. S-GDY exhibited enhanced nanozyme activity in vitro and in vivo that may directly trigger apoptosis-ferroptosis for effective tumor therapy. Altogether, this study was expected to provide new insights into the design of piezoelectric catalytic nanozyme and expand their application in the catalytic therapy of tumors.


Asunto(s)
Ferroptosis , Grafito , Apoptosis , Azufre
12.
Quant Imaging Med Surg ; 13(6): 3671-3687, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37284087

RESUMEN

Background: Significant differences exist in the classification outcomes for radiologists using ultrasonography-based Breast Imaging Reporting and Data Systems for diagnosing category 3-5 (BI-RADS 3-5) breast nodules, due to a lack of clear and distinguishing image features. Consequently, this retrospective study investigated the improvement of BI-RADS 3-5 classification consistency using a transformer-based computer-aided diagnosis (CAD) model. Methods: Independently, 5 radiologists performed BI-RADS annotations on 21,332 breast ultrasonographic images collected from 3,978 female patients from 20 clinical centers in China. All images were divided into training, validation, testing, and sampling sets. The trained transformer-based CAD model was then used to classify test images, for which sensitivity (SEN), specificity (SPE), accuracy (ACC), area under the curve (AUC), and calibration curve were evaluated. Variations in these metrics among the 5 radiologists were analyzed by referencing BI-RADS classification results for the sampling test set provided by CAD to determine whether classification consistency (the k value), SEN, SPE, and ACC could be improved. Results: After the training set (11,238 images) and validation set (2,996 images) were learned by the CAD model, the classification ACC of the CAD model applied to the test set (7,098 images) was 94.89% in category 3, 96.90% in category 4A, 95.49% in category 4B, 92.28% in category 4C, and 95.45% in category 5 nodules. Based on pathological results, the AUC of the CAD model was 0.924 and the predicted probability of CAD was a little higher than the actual probability in the calibration curve. After referencing BI-RADS classification results, the adjustments were made to 1,583 nodules, of which 905 were classified to a lower category and 678 to a higher category in the sampling test set. As a result, the ACC (72.41-82.65%), SEN (32.73-56.98%), and SPE (82.46-89.26%) of the classification by each radiologist were significantly improved on average, with the consistency (k values) in almost all of them increasing to >0.6. Conclusions: The radiologist's classification consistency was markedly improved with almost all the k values increasing by a value greater than 0.6, and the diagnostic efficiency was also improved by approximately 24% (32.73% to 56.98%) and 7% (82.46% to 89.26%) for SEN and SPE, respectively, of the total classification on average. The transformer-based CAD model can help to improve the radiologist's diagnostic efficacy and consistency with others in the classification of BI-RADS 3-5 nodules.

13.
Biochem Biophys Res Commun ; 671: 192-199, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37302294

RESUMEN

The therapeutic effects and application of radiotherapy are restricted to some extent due to low radiosensitivity of tumor tissues and adverse effects by excess dosage. Current radiosensitizers are confronted with problems in clinical translation because of complicated manufacture technique and high cost. In this research, we have synthesized a radiosensitizer with advantages in low cost and mass production, which could be applied to CT imaging and enhanced radiotherapy in breast cancer, namely Bi-DTPA. It not only enhanced tumor CT imaging which resulted in better therapeutic accuracy, but also realized radiotherapy sensitization by producing massive ROS and inhibit tumor proliferation, providing a sound perspective in the clinical translation of the radiosensitizer.


Asunto(s)
Neoplasias , Fármacos Sensibilizantes a Radiaciones , Humanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Tolerancia a Radiación , Neoplasias/tratamiento farmacológico , Ácido Pentético/farmacología , Ácido Pentético/uso terapéutico , Tomografía Computarizada por Rayos X/métodos
14.
ACS Appl Mater Interfaces ; 15(20): 24071-24083, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159843

RESUMEN

The rapid development of nanomedicine has brought hope and confidence to the precise treatment of tumors. However, the efficacy of nanoparticle-mediated therapy is severely limited due to phagocytosis and clearance by macrophages. CD47 is a well-documented ″don't eat me″ signaling molecule that binds to the SIRPα receptor on the macrophage surface, inhibiting the phagocytic behavior of the macrophages. In this study, CD47-overexpressing cancer cell membranes were used to coat hollow copper sulfide nanoparticles. The nanoparticles were shown to have an extended circulatory half-life and to actively target breast cancer, leading to increased accumulation in the tumor tissue. An excellent photothermal therapeutic effect was produced by near-infrared laser irradiation. At the same time, ß-lapachone within the nanoparticles generated large amounts of hydrogen peroxide in the tumor environment, which was then catalyzed by the copper sulfide nanozyme to cytotoxic hydroxyl radicals, exerting a chemodynamic therapeutic effect. This engineered biomimetic nanozyme, through the mediation of the ″don't eat me″ signal, achieved both photothermal and chemodynamic precision treatments of breast cancer, creating a new mode of safe and effective tumor treatment.


Asunto(s)
Neoplasias de la Mama , Neoplasias , Humanos , Femenino , Neoplasias de la Mama/patología , Antígeno CD47/metabolismo , Cobre/metabolismo , Biomimética , Macrófagos/metabolismo , Fagocitosis , Neoplasias/tratamiento farmacológico
15.
Acta Biomater ; 166: 536-551, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196903

RESUMEN

Choroidal neovascularization (CNV) is the main cause of vision loss in patients with wet age-related macular degeneration (AMD). Currently, treatment of these conditions requires repeated intravitreal injections, which may lead to complications such as infection and hemorrhage. So, we have developed a noninvasive method for treating CNV with nanoparticles, namely, Angiopoietin1-anti CD105-PLGA nanoparticles (AAP NPs), which targets the CNV to enhance drug accumulation at the site. These nanoparticles, with PLGA as a carrier, can slowly release encapsulated Angiopoietin 1 (Ang 1) and target the choroidal neovascularization marker CD105 to enhance drug accumulation, increases vascular endothelial cadherin (VE-cadherin) expression between vascular endothelial cells, effectively reduce neovascularization leakage and inhibit Angiopoietin 2(Ang 2) secretion by endothelial cells. In a rat model of laser-induced CNV, intravenous injection of AAP NPs exerted a good therapeutic effect in reducing CNV leakage and area. In short, these synthetic AAP NPs provide an effective alternative treatment for AMD and meet the urgent need for noninvasive treatment in neovascular ophthalmopathy. STATEMENT OF SIGNIFICANCE: This work describes the synthesis, injection-mediated delivery, in vitro and in vivo efficacy of targeted nanoparticles with encapsulated Ang1; via these nanoparticles, the drug can be targeted to choroidal neovascularization lesions for continuous treatment. The release of Ang1 can effectively reduce neovascularization leakage, maintain vascular stability, and inhibit Ang2 secretion and inflammation. This study provides a new approach for the treatment of wet age-related macular degeneration.


Asunto(s)
Neovascularización Coroidal , Nanopartículas , Degeneración Macular Húmeda , Ratas , Animales , Células Endoteliales/metabolismo , Neovascularización Coroidal/metabolismo , Degeneración Macular Húmeda/tratamiento farmacológico , Inflamación , Nanopartículas/uso terapéutico , Modelos Animales de Enfermedad
16.
J Nanobiotechnology ; 21(1): 165, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37221521

RESUMEN

BACKGROUND: Oxidative stress (OS) induced by an imbalance of oxidants and antioxidants is an important aspect in anticancer therapy, however, as an adaptive response, excessive glutathione (GSH) in the tumor microenvironment (TME) acts as an antioxidant against high reactive oxygen species (ROS) levels and prevents OS damage to maintain redox homoeostasis, suppressing the clinical efficacy of OS-induced anticancer therapies. RESULTS: A naturally occurring ROS-activating drug, galangin (GAL), is introduced into a Fenton-like catalyst (SiO2@MnO2) to form a TME stimulus-responsive hybrid nanopharmaceutical (SiO2-GAL@MnO2, denoted SG@M) for enhancing oxidative stress. Once exposed to TME, as MnO2 responds and consumes GSH, the released Mn2+ converts endogenous hydrogen peroxide (H2O2) into hydroxyl radicals (·OH), which together with the subsequent release of GAL from SiO2 increases ROS. The "overwhelming" ROS cause OS-mediated mitochondrial malfunction with a decrease in mitochondrial membrane potential (MMP), which releases cytochrome c from mitochondria, activates the Caspase 9/Caspase 3 apoptotic cascade pathway. Downregulation of JAK2 and STAT3 phosphorylation levels blocks the JAK2/STAT3 cell proliferation pathway, whereas downregulation of Cyclin B1 protein levels arrest the cell cycle in the G2/M phase. During 18 days of in vivo treatment observation, tumor growth inhibition was found to be 62.7%, inhibiting the progression of pancreatic cancer. Additionally, the O2 and Mn2+ released during this cascade catalytic effect improve ultrasound imaging (USI) and magnetic resonance imaging (MRI), respectively. CONCLUSION: This hybrid nanopharmaceutical based on oxidative stress amplification provides a strategy for multifunctional integrated therapy of malignant tumors and image-visualized pharmaceutical delivery.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias Pancreáticas , Humanos , Especies Reactivas de Oxígeno , Compuestos de Manganeso , Dióxido de Silicio , Óxidos , Estrés Oxidativo , Antioxidantes , Microambiente Tumoral , Neoplasias Pancreáticas
17.
J Med Chem ; 66(9): 6263-6273, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37092695

RESUMEN

Proteolysis-targeting chimera (PROTAC) has emerged as a promising strategy for degrading proteins of interest. Peptide-based PROTACs offer several advantages over small-molecule-based PROTACs, such as high specificity, low toxicity, and large protein-protein interaction surfaces. However, peptide-based PROTACs have several intrinsic shortcomings that strongly limit their application including poor cell permeability and low stability and potency. Herein, we designed a nanosized hybrid PROTAC (GNCTACs) to target and degrade human epidermal growth factor receptor 2 (HER2) in tumor cells. Gold nanoclusters (GNCs) were utilized to connect HER2-targeting peptides and cereblon (CRBN)-targeting ligands. GNCTACs could overcome the intrinsic barriers of peptide-based PROTACs, efficiently delivering HER2-targeting peptides in the cytoplasm and protecting them from degradation. Furthermore, a fasting-mimicking diet was applied to enhance the cellular uptake and proteasome activity. Consequently, more than 95% of HER2 in SKBR3 cells was degraded by GNCTACs, and the degradation lasted for at least 72 h, showing a catalytic-like reaction.


Asunto(s)
Apoptosis , Proteínas , Humanos , Proteínas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Quimera Dirigida a la Proteólisis
18.
Photoacoustics ; 30: 100474, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37025112

RESUMEN

Optical-responsive nanodroplets have recently been studied as a new mode of remotely controlled drug delivery. As a class of new emerging smart drug carriers, NIR-absorber-loaded perfluorocarbon nanodroplets can be converted into gas bubbles through laser stimulation, called optical droplet vaporization (ODV), which provides a potential strategy to deliver therapeutic agents to solid tumors on demand. However, there is a lack of suitable technologies to monitor these drug-loaded nanodroplet behaviors in vivo, and control the site and amount of drug released. In this study, ultrasound and photoacoustic imaging technology were applied to directly monitor optical-responsive, drug-loaded nanodroplets within the tissue. We explored the effects of laser energy, repetition rate, and number of pulses on the release profiles of the delivered drug as well as ultrasound and photoacoustic imaging signal-intensity curves. The conducted studies demonstrated that this noninvasive technology helped determine the optimum time point for laser activation on accumulated drug-loaded nanodroplets within tissues, allowing for the potential to effectively treat pathologies while minimizing drug-related toxicities.

19.
J Thromb Haemost ; 21(6): 1650-1665, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36893911

RESUMEN

BACKGROUND: Stroke accelerates inflammatory monocyte recruitment to the endothelium and consequent atheroprogression via high-mobility group box 1-receptor for advanced glycation end products signaling. Notably, Hmgb1 interacts with multiple toll-like receptors (TLRs) and promotes TLR4-mediated proinflammatory myeloid cell activation. Therefore, TLR-associated mechanism(s) within monocytes may play a role in Hmgb1-driven poststroke atheroprogression. OBJECTIVES: We aimed to elucidate the TLR-associated mechanism(s) within monocytes that contribute to stroke-induced exacerbation of atherosclerotic disease. METHODS: A weighted gene coexpression network analysis on the whole blood transcriptomes of stroke model mice identified hexokinase 2 (HK2) as a key gene associated with TLR signaling in ischemic stroke. We conducted a cross-sectional analysis of monocyte HK2 levels in patients with ischemic stroke patients. We performed in vitro and in vivo studies using high-cholesterol diet-fed myeloid-specific Hk2-null ApoE-/- (ApoE-/-;Hk2ΔMφ) mice and ApoE-/-;Hk2fl/fl controls. RESULTS: We found markedly higher monocyte HK2 levels in patients with ischemic stroke patients during the acute and subacute phases poststroke. Similarly, stroke model mice displayed a profound increase in monocyte Hk2 levels. Using aortas and aortic valve samples collected from high-cholesterol diet-fed ApoE-/-;Hk2ΔMφ mice and ApoE-/-;Hk2fl/fl controls, we found that stroke-induced monocyte Hk2 upregulation enhanced poststroke atheroprogression and inflammatory monocyte recruitment to the endothelium. Stroke-induced monocyte Hk2 upregulation induced inflammatory monocyte activation, systemic inflammation, and atheroprogression via Il-1ß. Mechanistically, we demonstrated that stroke-induced monocyte Hk2 upregulation was dependent upon Hmgb1-driven p38-dependent hypoxia-inducible factor-1α stabilization. CONCLUSION: Stroke-induced monocyte Hk2 upregulation is a key mechanism underlying poststroke vascular inflammation and atheroprogression.


Asunto(s)
Proteína HMGB1 , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Monocitos , Hexoquinasa/genética , Estudios Transversales , Accidente Cerebrovascular/genética , Inflamación/genética , Apolipoproteínas E/genética , Colesterol , Ratones Noqueados , Ratones Endogámicos C57BL
20.
J Control Release ; 356: 610-622, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898531

RESUMEN

Atherosclerosis is the leading cause of mortality globally. RBC-platelet hybrid membrane-coated nanoparticles ([RBC-P]NPs), which biologically mimic platelets in vivo, display evidence of anti-atherosclerotic activity. The efficacy of a targeted RBC-platelet hybrid membrane-coated nanoparticles ([RBC-P]NP)-based approach was investigated as a primary preventive measure against atherosclerosis. A ligand-receptor interactome analysis conducted with circulating platelets and monocytes derived from CAD patients and healthy controls identified CXCL8-CXCR2 as a key platelet ligand-monocyte receptor dyad in CAD patients. Based on this analysis, a novel anti-CXCR2 [RBC-P]NP that specifically binds to CXCR2 and blocks the interaction between CXCL8 and CXCR2 was engineered and characterized. Administering anti-CXCR2 [RBC-P]NPs to Western diet-fed Ldlr-/- mice led to diminished plaque size, necrosis, and intraplaque macrophage accumulation relative to control [RBC-P]NPs or vehicle. Importantly, anti-CXCR2 [RBC-P]NPs demonstrated no adverse bleeding/hemorrhagic effects. A series of in vitro experiments was conducted to characterize anti-CXCR2 [RBC-P]NP's mechanism of action in plaque macrophages. Mechanistically, anti-CXCR2 [RBC-P]NPs inhibited p38α (Mapk14)-mediated, pro-inflammatory M1 skewing and corrected efferocytosis in plaque macrophages. This targeted [RBC-P]NP-based approach, in which the cardioprotective effects of anti-CXCR2 [RBC-P]NP therapy overweighs its bleeding/hemorrhagic risks, could potentially be used to proactively manage atherosclerotic progression in at-risk populations.


Asunto(s)
Aterosclerosis , Nanopartículas , Placa Aterosclerótica , Ratones , Animales , Ligandos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Membrana Eritrocítica , Eritrocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA