Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 110: 108089, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703750

RESUMEN

Psoriasis (Ps), a chronic inflammatory disease affecting approximately 2 % of the global population, has been associated with an increased risk of liver cancer in observational studies. However, their causal relationships as well as underlying shared molecular mechanisms between Ps and liver cancer remain unclear. Using bidirectional Mendelian randomization analysis, we revealed that a genetic predisposition to liver cancer increased the risk of Ps in European and East Asian populations but not the other way around. Moreover, we analyzed three transcriptomic datasets of patients with Ps and liver cancer from open-source databases. Differentially expressed genes (DEGs) and disease-specific gene co-expression module analyses revealed that cell-cycle dysregulation was the shared mechanism of Ps and liver cancer. Moreover, we identified a rank-conservative gene signature shared between these two diseases, which demonstrated significance in diagnostic and prognostic predictions. These findings provided valuable insights into the interconnections between Ps and liver cancer, which may be helpful to guide therapeutic management.


Asunto(s)
Biología Computacional , Neoplasias Hepáticas , Análisis de la Aleatorización Mendeliana , Psoriasis , Humanos , Psoriasis/genética , Neoplasias Hepáticas/genética , Predisposición Genética a la Enfermedad
2.
Cancer Lett ; 577: 216425, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37805163

RESUMEN

Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Lactato Deshidrogenasa 5 , Neoplasias Pulmonares , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Glucólisis , L-Lactato Deshidrogenasa , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Transducción de Señal
3.
Phytother Res ; 37(12): 5837-5853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37621136

RESUMEN

Upon prolonged use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small-cell lung cancer (NSCLC), acquired drug resistance inevitably occurs. This study investigates the combined use of EGFR-TKIs (gefitinib or osimertinib) with epigallocatechin gallate (EGCG) to overcome acquired drug resistance in NSCLC models. The in vitro antiproliferative effects of EGFR-TKIs and EGCG combination in EGFR-mutant parental and resistant cell lines were evaluated. The in vivo efficacy of the combination was assessed in xenograft mouse models derived from EGFR-TKI-resistant NSCLC cells. We found that the combined use of EGFR-TKIs and EGCG significantly reversed the Warburg effect by suppressing glycolysis while boosting mitochondrial respiration, which was accompanied by increased cellular ROS and decreased lactate secretion. The combination effectively activated the AMPK pathway while inhibited both ERK/MAPK and AKT/mTOR pathways, leading to cell cycle arrest and apoptosis, particularly in drug-resistant NSCLC cells. The in vivo results obtained from mouse tumor xenograft model confirmed that EGCG effectively overcame osimertinib resistance. This study revealed that EGCG suppressed cancer bypass survival signaling and altered cancer metabolic profiles, which is a promising anticancer adjuvant of EGFR-TKIs to overcome acquired drug resistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP , Neoplasias Pulmonares/patología , Proliferación Celular , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos , Receptores ErbB , Glucosa/farmacología , Línea Celular Tumoral , Mutación
4.
Front Neurol ; 14: 1108722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37470003

RESUMEN

Hypertensive cerebral hemorrhage, the most common prevalent of spontaneous cerebral hemorrhage, poses a significant threat to patient mortality and morbidity, while therapeutic options remain limited, making the disease a burden not only for patients' families but also a major challenge for national healthcare systems. The elevation of intracranial pressure subsequent to hypertensive cerebral hemorrhage is a critical contributor to mortality. However, it often manifests before the onset of clinical symptoms, which are typically atypical, leading to delayed treatment and irreversible consequences for the patient. Hence, early detection of intracranial pressure variations can aid in timely, efficient, and precise treatment, reducing patient mortality. Invasive intracranial pressure monitoring enables real-time, accurate monitoring of intracranial pressure changes, providing clinicians with therapeutic guidance and overcoming the limitations of empirical treatment. This article aims to review the use of invasive intracranial pressure monitoring in postoperative hypertensive cerebral hemorrhage and hopes to contribute to clinical and scientific research.

5.
FEBS J ; 290(19): 4792-4809, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37410361

RESUMEN

Lung cancer cells often show elevated levels of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH). However, the connections between deregulated redox homeostasis in different subtypes of lung cancer and acquired drug resistance in lung cancer have not yet been fully established. Herein, we analyzed different subtypes of lung cancer data reported in the Cancer Cell Line Encyclopedia (CCLE) database, the Cancer Genome Atlas program (TCGA), and the sequencing data obtained from a gefitinib-resistant non-small-cell lung cancer (NSCLC) cell line (H1975GR). Using flux balance analysis (FBA) model integrated with multiomics data and gene expression profiles, we identified cytosolic malic enzyme 1 (ME1) and glucose-6-phosphate dehydrogenase as the major contributors to the significantly upregulated NADPH flux in NSCLC tissues as compared with normal lung tissues, and gefitinib-resistant NSCLC cell line as compared with the parental cell line. Silencing the gene expression of either of these two enzymes in two osimertinib-resistant NSCLC cell lines (H1975OR and HCC827OR) exhibited strong antiproliferative effects. Our findings not only underscored the pivotal roles of cytosolic ME1 and glucose-6-phosphate dehydrogenase in regulating redox states in NSCLC cells but also provided novel insights into their potential roles in drug-resistant NSCLC cells with disturbed redox states.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Gefitinib/farmacología , NADP/metabolismo , Glucosafosfato Deshidrogenasa/genética , Resistencia a Antineoplásicos/genética , Oxidación-Reducción , Línea Celular Tumoral , Proliferación Celular
6.
Chem Biol Interact ; 378: 110467, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004952

RESUMEN

Pyruvate dehydrogenase kinase 1 (PDK1) is an important metabolic enzyme which is often overexpressed in many types of cancers, including non-small-cell lung cancers (NSCLC). Targeting PDK1 appears to be an attractive anticancer strategy. Based on a previously reported moderate potent anticancer PDK1 inhibitor, 64, we developed three dichloroacetophenone biphenylsulfone ethers, 30, 31 and 32, which showed strong PDK1 inhibitions of 74%, 83% and 72% at 10 µM, respectively. Then we investigated the anticancer effects of 31 in two NSCLC cell lines, namely, NCI-H1299 and NCI-H1975. It was found that 31 exhibited sub-micromolar cancer cell IC50s, suppressed colony formation, induced mitochondrial membrane potential depolarization, triggered apoptosis, altered cellular glucose metabolism, with concomitant reductions in extracellular lactate levels and enhanced the generation of reactive oxygen species in NSCLC cells. Moreover, 31 significantly suppressed the tumor growth in an NCI-H1975 mouse xenograft model, outperforming the anticancer effects of 64. Taken together our results suggested that inhibition of PDK1 via dichloroacetophenone biphenylsulfone ethers may provide a novel direction leading to an alternative treatment option in NSCLC therapy.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Proteínas Serina-Treonina Quinasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Éteres/farmacología , Éteres/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Apoptosis , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA