Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 170: 105653, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37595643

RESUMEN

Liver fibrosis refers to a reversible event of repair and reconstruction following injury due to various etiologies, and its continuous development will lead to cirrhosis and liver cancer. Abnormal alterations in intestinal microbiota can hasten the development of hepatic fibrosis and damage. Veronicastrum latifolium (Hemsl.) Yamazaki (VLY) is a classic drug applied extensively for managing acute and chronic hepatitis, liver cirrhosis and ascites in ethnic minority areas of Guizhou Province, China, which possesses broad-spectrum pharmacological activities. In view of the crucial role of intestinal microbiota in the development of liver fibrosis, the present study attempted to investigate the effects of VLY aqueous extract on ameliorating CCl4-elicited liver fibrosis in mice and on intestinal microbiota and to explore its possible mechanism. Phytochemical analysis showed that VLY water extract contained a variety of components, particularly rich in organic acids and their derivatives, flavonoids, phenolic acids, nucleotides and their derivatives, carbohydrates and other compounds. VLY water extract remarkably alleviated CCl4-induced liver damage and fibrosis in mice, improved liver histology, and improved liver function abnormalities. VLY water extract also inhibited the activation of hepatic stellate cells and invasion of intrahepatic inflammatory cells. Additionally, sequencing the 16 s rDNA gene revealed that VLY water extract changed the intestinal microbiota composition in liver fibrotic mice. It elevated the Firmicutes/Bacteroidota ratio and enriched the relative Lactobacillus richness, which is capable of mitigating fibrosis and inflammation in impaired liver. In summary, through modulation of inflammation and intestinal microbiota, VLY water extract can reduce the CCl4-elicited liver fibrosis.


Asunto(s)
Tetracloruro de Carbono , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Tetracloruro de Carbono/efectos adversos , Agua/efectos adversos , Etnicidad , Grupos Minoritarios , Estructura Molecular , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Hígado , Fibrosis , Inflamación
2.
J Food Prot ; 84(7): 1252-1264, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33710304

RESUMEN

ABSTRACT: Cooked cured ham is a ready-to-eat food that is popular among consumers. Stored temperature has a key effect on the quality and shelf life of ham. In this work, the quality changes and shelf-life prediction of cooked cured ham stored at different temperatures were investigated. Sensory evaluation, physical and chemical indicators, and aerobic plate count were determined. Results showed that high storage temperature of cooked ham accelerates quality deterioration. Partial least squares (PLS) regression analysis based on the variable importance for projection identified nine important variables for predicting the shelf life of cooked cured ham. Compared with either PLS or back-propagation artificial neural network, the hybrid PLS-back-propagation artificial neural network model better predicts the shelf life of cooked cured ham by using the nine variables. This study provides a theoretical basis and data support for the quality control of cooked cured ham and a new idea for research on the shelf-life prediction of cooked cured ham.


Asunto(s)
Listeria monocytogenes , Carne de Cerdo , Recuento de Colonia Microbiana , Microbiología de Alimentos , Temperatura
3.
RSC Adv ; 11(8): 4713-4722, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424380

RESUMEN

Recently, research interest in the application of lignin is growing, especially as adsorbent material. However, single lignin shows unsatisfactory adsorption performance, and thus, construction of lignin-based nanocomposites is worth considering. Herein, we introduced graphene oxide (GO) into lignin to form lignin/GO (LGNs) composite nanospheres by a self-assembly method. FTIR and 1H NMR spectroscopy illustrated that lignin and GO are tightly connected by hydrogen bonds. The LGNs as an environmental friendly material, also exhibit excellent performance for Cr(vi) removal. The maximum sorption capacity of LGNs is 368.78 mg g-1, and the sorption efficiency is 1.5 times than that of lignin nanospheres (LNs). The removal process of Cr(vi) via LGNs mainly relies on electrostatic interaction, and it also involves the reduction of Cr(vi) to Cr(iii). Moreover, LGNs still have high adsorption performance after repeating five times with the sorption capacity of 150.4 mg g-1 in 200 mg g-1 Cr(vi) solution. Therefore, the prepared lignin-GO composite nanospheres have enormous potential as a low-cost, high-absorbent and recyclable adsorbent, and can be used in wastewater treatment.

4.
Materials (Basel) ; 13(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106506

RESUMEN

The pentose/furfural industrial manufacturing process uses corn cob residue as a raw material, where such a process yields significant amount of lignin-rich residue (LCR) at the end, which is commonly disposed by burning. In this study, the conversion of LCR to biochars (BCs), and their subsequent applications for heavy metal ion removal, were investigated. The BCs were prepared through hydrothermal carbonization and post-activation, using either ZnCl2 or H3PO4 treatment. The as-prepared activated BCs were characterized using N2 adsorption-desorption isotherms, XRD, FT-IR, SEM and TEM, and their performance in removing heavy metal ions (Pb2+, Cu2+, Cd2+) from aqueous solutions was assessed. The ZnCl2-activated BCs (BC-ZnCl2) exhibit a higher adsorption capacity than the H3PO4-activated BCs (BC-H3PO4), mainly due to the differences in their chemical/physical characteristics. The related adsorption kinetics and isotherms were analyzed.

5.
Materials (Basel) ; 13(2)2020 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-31940949

RESUMEN

Pretreatment is an essential process for the extensive utilization of lignocellulose materials. The effect of four common organic acid pretreatments for Kraft dissolving pulp production was comparatively investigated. It was found that under acidic conditions, hemicellulose can be effectively removed and more reducing sugars can be recovered. During acetic acid pretreatment, lignin that was dissolved in acetic acid could form a lignin-related film which would alleviate cellulose hydrolysis, while other organic acids caused severe cellulose degradation. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD) were used to characterize the pretreated chips in the process. Lignin droplets were attached to the surface of the treated wood chips according to the SEM results. The FTIR spectrum showed that the lignin peak signal becomes stronger, and the hemicellulose peak signal becomes weaker with acid pretreatment. The XRD spectrum demonstrated that the crystallinity index of the wood chips increased. The acetic acid pretreatment process-assisted Kraft process achieved higher yield (31.66%) and higher α-cellulose (98.28%) than any other organic acid pretreatment. Furthermore, extensive utilization of biomass was evaluated with the acetic acid pretreatment-assisted Kraft process. 43.8% polysaccharide (12.14% reducing sugar and 31.66% dissolving pulp) and 22.24% lignin (0.29% acetic acid lignin and 21.95% sulfate lignin) were recovered during the process. Biomass utilization could reach 66.04%. Acetic acid pretreatment is a promising process for extensive biomass utilization.

6.
Meat Sci ; 161: 107995, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31710887

RESUMEN

A portion of the fat used in the preparation of meatballs was replaced with different amounts of Perilla seeds rich in unsaturated fatty acids. Five treatments with mass percentages of 0%, 5%, 10%, 15%, and 20%, including a set of blank treatment and four groups treated with different Perilla seed contents, were performed. The effects of Perilla seed content on the proximate composition, pH, color, cooking yield, emulsion stability, texture, fatty acid composition, and sensory properties of meatballs were analyzed. The meatballs with Perilla seeds showed remarkably better properties than those without seeds. The addition of 10% (w/w) Perilla seeds significantly (P < 0.05) improved the texture, composition, and content of polyunsaturated fatty acids (PUFAs), dietary fiber, and protein in meatballs. Moreover, the characteristic flavor components were rich and varied, which enhanced the taste, flavor, and satiety of the meatballs. This work provided theoretical and data support for the preparation of Perilla meatballs rich in PUFAs and dietary fiber.


Asunto(s)
Grasas de la Dieta , Calidad de los Alimentos , Productos de la Carne/análisis , Perilla/química , Carne de Cerdo/análisis , Semillas/química , Adulto , Animales , Color , Culinaria , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad , Porcinos , Gusto , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...