RESUMEN
BACKGROUND: Subject-ventilator asynchrony (SVA) was shown to be associated with negative clinical outcomes. To elucidate pathophysiology pathways and effects of SVA on lung tissue histology a reproducible animal model of artificially induced asynchrony was developed and evaluated. METHODS: Alterations in ventilator parameters were used to induce the three main types of asynchrony: ineffective efforts (IE), auto-triggering (AT), and double-triggering (DT). Airway flow and pressure, as well as oesophageal pressure waveforms, were recorded, asynchrony cycles were manually classified and the asynchrony index (AIX) was calculated. Bench tests were conducted on an active lung simulator with ventilator settings altered cycle by cycle. The developed algorithm was evaluated in three pilot experiments and a study in pigs ventilated for twelve hours with AIX = 25%. RESULTS: IE and AT were induced reliably and fail-safe by end-expiratory hold and adjustment of respiratory rate, respectively. DT was provoked using airway pressure ramp prolongation, however not controlled specifically in the pilots. In the subsequent study, an AIX = 28.8% [24.0%-34.4%] was induced and maintained over twelve hours. CONCLUSIONS: The method allows to reproducibly induce and maintain three clinically relevant types of SVA observed in ventilated patients and may thus serve as a useful tool for future investigations on cellular and inflammatory effects of asynchrony.
Asunto(s)
Modelos Animales de Enfermedad , Respiración Artificial , Animales , Porcinos , Respiración Artificial/métodos , Respiración Artificial/efectos adversos , Mecánica Respiratoria/fisiología , Lesión Pulmonar/fisiopatología , Pulmón/fisiopatología , Proyectos Piloto , Femenino , AlgoritmosRESUMEN
Background: Despite being essential in patients with acute respiratory distress syndrome (ARDS), mechanical ventilation (MV) may cause lung injury and hemodynamic instability. Mechanical power (MP) may describe the net injurious effects of MV, but whether it reflects the hemodynamic effects of MV is currently unclear. We hypothesized that MP is also associated with cardiac output (CO) and pulmonary blood flow (PBF). Methods: 24 anesthetized pigs with experimental acute lung injury were ventilated for 18 h according to one of three strategies: 1) Open lung approach (OLA), 2) ARDS Network high-PEEP/FIO2 strategy (HighPEEP), or 3) low-PEEP/FIO2 strategy (LowPEEP). Total MP was assessed as the sum of energy dissipated to overcome airway resistance and energy temporarily stored in the elastic lung tissue per minute. The distribution of pulmonary perfusion was determined by positron emission tomography. Regional PBF and MP, assessed in three iso-gravitational regions of interest (ROI) with equal lung mass (ventral, middle, and dorsal ROI), were compared between groups. Results: MP was higher in the LowPEEP than in the OLA group, while CO did not differ between groups. After 18 h, regional PBF did not differ between groups. During LowPEEP, regional MP was higher in the ventral ROI compared to OLA and HighPEEP groups (2.5 ± 0.3 vs. 1.4 ± 0.4 and 1.6 ± 0.3 J/min, respectively, P < 0.001 each), and higher in the middle ROI compared to the OLA group (2.5 ± 0.4 vs. 1.6 ± 0.5 J/min, P = 0.04). MP in the dorsal ROI did not differ between groups (1.4 ± 0.9 vs. 1.4 ± 0.5 vs. 1.3 ± 0.8 J/min, P = 0.916). Total MP was independently associated with CO [0.34 (0.09, 0.59), P = 0.020]. Regional MP was positively associated with PBF irrespective of the regions [0.52 (0.14, 0.76), P = 0.01; 0.49 (0.10, 0.74), P = 0.016; 0.64 (0.32, 0.83), P = 0.001 for ventral, middle, and dorsal ROI, respectively]. Subgroup analysis revealed a significant association of MP and CO only in the OLA group as well as a significant association between MP with regional PBF only in the HighPEEP group. Conclusion: In this model of acute lung injury in pigs ventilated with either open lung approach, high, or low PEEP tables recommended by the ARDS network, MP correlated positively with CO and regional PBF, whereby these clinically relevant lung-protective ventilation strategies influenced the associations.
RESUMEN
The continuous production of mature blood cell lineages is maintained by hematopoietic stem cells but they are highly susceptible to damage by ionizing radiation (IR) that induces death. Thus, devising therapeutic strategies that can mitigate hematopoietic toxicity caused by IR would benefit acute radiation syndrome (ARS) victims and patients receiving radiotherapy. Herein, we describe the preparation of an injectable hydrogel formulation based on Arg-Gly-Asp-alginate (RGD-Alg) and Laponite using a simple mixing method that ensured a slow and sustained release of interleukin-12 (IL-12) (RGD-Alg/Laponite@IL-12). The local administration of RGD-Alg/Laponite@IL-12 increased survival rates and promoted the hematopoietic recovery of mice who had received sublethal-dose irradiation. Local intra-bone marrow (intra-BM) injection of RGD-Alg/Laponite@IL-12 hydrogel effectively stimulated IL12 receptor-phosphoinositide 3-kinase/protein kinase B (IL-12R-PI3K/AKT) signaling axis, which promoted proliferation and hematopoietic growth factors secretion of BM mesenchymal stem/stromal cells. This signaling axis facilitates the repair of the hematopoietic microenvironment and plays a pivotal role in hematopoietic reconstitution. In conclusion, we describe a biomaterial-sustained release of IL-12 for the treatment of irradiated hematopoietic injury and provide a new therapeutic strategy for hematopoietic ARS.
RESUMEN
Purpose: Mitochondrial oxidative stress is an important factor in cell apoptosis. Cerium oxide nanomaterials show great potential for scavenging free radicals and simulating superoxide dismutase (SOD) and catalase (CAT) activities. To solve the problem of poor targeting of cerium oxide nanomaterials, we designed albumin-cerium oxide nanoclusters (TPP-PCNLs) that target the modification of mitochondria with triphenyl phosphate (TPP). TPP-PCNLs are expected to simulate the activity of superoxide dismutase, continuously remove reactive oxygen species, and play a lasting role in radiation protection. Methods: First, cerium dioxide nanoclusters (CNLs), polyethylene glycol cerium dioxide nanoclusters (PCNLs), and TPP-PCNLs were characterized in terms of their morphology and size, ultraviolet spectrum, dispersion stability and cellular uptake, and colocalization Subsequently, the anti-radiation effects of TPP-PCNLs were investigated using in vitro and in vivo experiments including cell viability, apoptosis, comet assays, histopathology, and dose reduction factor (DRF). Results: TPP-PCNLs exhibited good stability and biocompatibility. Inâvitro experiments indicated that TPP-PCNLs could not only target mitochondria excellently but also regulate reactive oxygen species (ROS)levels in whole cells. More importantly, TPP-PCNLs improved the integrity and functionality of mitochondria in irradiated L-02 cells, thereby indirectly eliminating the continuous damage to nuclear DNA caused by mitochondrial oxidative stress. TPP-PCNLs are mainly targeted to the liver, spleen, and other extramedullary hematopoietic organs with a radiation dose reduction factor of 1.30. In vivo experiments showed that TPP-PCNLs effectively improved the survival rate, weight change, hematopoietic function of irradiated animals. Western blot experiments have confirmed that TPP-PCNLs play a role in radiation protection by regulating the mitochondrial apoptotic pathway. Conclusion: TPP-PCNLs play a radiologically protective role by targeting extramedullary hematopoietic organ-liver cells and mitochondria to continuously clear ROS.
Asunto(s)
Apoptosis , Cerio , Hematopoyesis , Mitocondrias , Especies Reactivas de Oxígeno , Cerio/química , Cerio/farmacología , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Protectores contra Radiación/farmacología , Protectores contra Radiación/química , Humanos , Protección Radiológica/métodos , Línea CelularRESUMEN
BACKGROUND: During one-lung ventilation (OLV), positive end-expiratory pressure (PEEP) can improve lung aeration but might overdistend lung units and increase intrapulmonary shunt. The authors hypothesized that higher PEEP shifts pulmonary perfusion from the ventilated to the nonventilated lung, resulting in a U-shaped relationship with intrapulmonary shunt during OLV. METHODS: In nine anesthetized female pigs, a thoracotomy was performed and intravenous lipopolysaccharide infused to mimic the inflammatory response of thoracic surgery. Animals underwent OLV in supine position with PEEP of 0 cm H2O, 5 cm H2O, titrated to best respiratory system compliance, and 15 cm H2O (PEEP0, PEEP5, PEEPtitr, and PEEP15, respectively, 45 min each, Latin square sequence). Respiratory, hemodynamic, and gas exchange variables were measured. The distributions of perfusion and ventilation were determined by IV fluorescent microspheres and computed tomography, respectively. RESULTS: Compared to two-lung ventilation, the driving pressure increased with OLV, irrespective of the PEEP level. During OLV, cardiac output was lower at PEEP15 (5.5 ± 1.5 l/min) than PEEP0 (7.6 ± 3 l/min) and PEEP5 (7.4 ± 2.9 l/min; P = 0.004), while the intrapulmonary shunt was highest at PEEP0 (PEEP0: 48.1% ± 14.4%; PEEP5: 42.4% ± 14.8%; PEEPtitr: 37.8% ± 11.0%; PEEP15: 39.0% ± 10.7%; P = 0.027). The relative perfusion of the ventilated lung did not differ among PEEP levels (PEEP0: 65.0% ± 10.6%; PEEP5: 68.7% ± 8.7%; PEEPtitr: 68.2% ± 10.5%; PEEP15: 58.4% ± 12.8%; P = 0.096), but the centers of relative perfusion and ventilation in the ventilated lung shifted from ventral to dorsal and from cranial to caudal zones with increasing PEEP. CONCLUSIONS: In this experimental model of thoracic surgery, higher PEEP during OLV did not shift the perfusion from the ventilated to the nonventilated lung, thus not increasing intrapulmonary shunt.
Asunto(s)
Estudios Cruzados , Ventilación Unipulmonar , Respiración con Presión Positiva , Animales , Respiración con Presión Positiva/métodos , Porcinos , Femenino , Ventilación Unipulmonar/métodos , Intercambio Gaseoso Pulmonar/fisiología , Pulmón/fisiología , Circulación Pulmonar/fisiología , Distribución Aleatoria , Hemodinámica/fisiologíaRESUMEN
The effect of ionizing radiation on the gastrointestinal tract is a common complication of abdominal and pelvic radiotherapy. However, the pathological features of radiation enteropathy and its effective medical intervention regimen is still a global challenge. Here, we explored the role and mechanism of enteric alpha-defensins (EαDs) in protecting against radiation enteropathy. To address this, we utilized EαDs-deficiency mice, in which the matrix metallopeptidase 7 to activate Paneth cell α-defensins was knockout (KO) mice, and the complementary wild-type (WT) control mice for this study. Remarkably, the KO mice were more susceptible to 5.0 Gy total-body irradiation, resulting in worse clinic scores and lower survival rate, compared with the wild-type mice. Histological examination indicated that the KO mice were subjected to slow recovery of intestinal villus and mucosa function, characterized by the reduced expression of TFF3, Glut1 and Muc2. In addition, compared with the wild-type controls, the KO mice experienced serious inflammation response in intestinal tissue, indicated by the remarkably increased expression level of IL-1ß, IL-6 and IL-12. Using high-throughput sequencing analysis, we found that the intestinal bacterial community of the KO mice was more prone to dysbiosis than that of the WT mice, with significantly increased abundance of opportunistic pathogenic bacteria, such as Streptococcus sp. and Escherichia-Shigella sp., whereas remarkably decreased probiotics harboring Lactobacillus sp., Desulfovibrio sp. etc. Fecal metabolomics analysis indicated that the relative abundance of 31 metabolites arose significantly different between WT and KO mice on day 10 after radiation exposure. A subset of differential metabolites to regulate host metabolism and immunity, such as acetic acid, acetate, butanoic acid, was negatively correlated with the alteration of gut microbiota in the irradiated KO mice. This study provides new insight into EαDs contribution to the recovery of radiation-induced intestinal damage, and suggests a potential novel target to prevent the adverse effects of radiotherapy.
Asunto(s)
Microbioma Gastrointestinal , Traumatismos por Radiación , alfa-Defensinas , Ratones , Animales , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Microbioma Gastrointestinal/efectos de la radiación , Intestinos , Mucosa Intestinal/metabolismo , Heces/microbiología , Traumatismos por Radiación/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BLRESUMEN
Background: Mechanical ventilation (MV) is a life supporting therapy but may also cause lung damage. This phenomenon is known as ventilator-induced lung injury (VILI). A potential pathomechanisms of ventilator-induced lung injury may be the stretch-induced production and release of cytokines and pro-inflammatory molecules from the alveolar epithelium. Yes-associated protein (YAP) might be regulated by mechanical forces and involved in the inflammation cascade. However, its role in stretch-induced damage of alveolar cells remains poorly understood. In this study, we explored the role of YAP in the response of alveolar epithelial type II cells (AEC II) to elevated cyclic stretch in vitro. We hypothesize that Yes-associated protein activates its downstream targets and regulates the interleukin-6 (IL-6) expression in response to 30% cyclic stretch in AEC II. Methods: The rat lung L2 cell line was exposed to 30% cyclic equibiaxial stretch for 1 or 4 h. Non-stretched conditions served as controls. The cytoskeleton remodeling and cell junction integrity were evaluated by F-actin and Pan-cadherin immunofluorescence, respectively. The gene expression and protein levels of IL-6, Yes-associated protein, Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1), and connective tissue growth factor (CTGF/CCN2) were studied by real-time polymerase chain reaction (RT-qPCR) and Western blot, respectively. Verteporfin (VP) was used to inhibit Yes-associated protein activation. The effects of 30% cyclic stretch were assessed by two-way ANOVA. Statistical significance as accepted at p < 0.05. Results: Cyclic stretch of 30% induced YAP nuclear accumulation, activated the transcription of Yes-associated protein downstream targets Cyr61/CCN1 and CTGF/CCN2 and elevated IL-6 expression in AEC II after 1 hour, compared to static control. VP (2 µM) inhibited Yes-associated protein activation in response to 30% cyclic stretch and reduced IL-6 protein levels. Conclusion: In rat lung L2 AEC II, 30% cyclic stretch activated YAP, and its downstream targets Cyr61/CCN1 and CTGF/CCN2 and proinflammatory IL-6 expression. Target activation was blocked by a Yes-associated protein inhibitor. This novel YAP-dependent pathway could be involved in stretch-induced damage of alveolar cells.
RESUMEN
Cuprous oxide (Cu2O) and cupric oxide (CuO) are widely available and low cost raw materials. Their applications as precursors for wet chemical synthesis of metallic Cu materials are greatly limited due to their insoluble in water and most organic solvents. In this work, copper superfine particles (Cu SPs) are synthesized using Cu2O and CuO as precursors via a heating process in monoethanoamine (MEA). Due to the strong coordinating character, Cu2O and CuO can be partially dissolved in MEA. The dissolved copper source is reduced by MEA at elevated temperature with the drastically releasing of NH3. As the dissolved copper source is reduced, more oxide will be dissolved and finally leads to the full reduction of Cu2O and CuO to produce the Cu SPs. The advantage of this synthesis method is that MEA acts as both the solvent and the reducing agent. The antimicrobial properties are investigated to find that the obtained Cu SPs depress the growth of Escherichia coli (E. coli) and Staphylococcus aureus (St. aureus) efficiently. More interesting, the composites produced via curing Cu2O and CuO with a small amount of MEA also exhibit excellent antimicrobial activity, indicating the MEA curing method is high-efficiency. The synthesis is low cost, high-efficiency, high atom-economy and up-scale synthesizing easily, which will benefit the wide applications of Cu SPs.
Asunto(s)
Antiinfecciosos , Cobre , Antiinfecciosos/farmacología , Cobre/farmacología , Escherichia coli , Etanolamina , ÓxidosRESUMEN
Background: Mechanical ventilation (MV) may initiate or worsen lung injury, so-called ventilator-induced lung injury (VILI). Although different mechanisms of VILI have been identified, research mainly focused on single ventilator parameters. The mechanical power (MP) summarizes the potentially damaging effects of different parameters in one single variable and has been shown to be associated with lung damage. However, to date, the association of MP with pulmonary neutrophilic inflammation, as assessed by positron-emission tomography (PET), has not been prospectively investigated in a model of clinically relevant ventilation settings yet. We hypothesized that the degree of neutrophilic inflammation correlates with MP. Methods: Eight female juvenile pigs were anesthetized and mechanically ventilated. Lung injury was induced by repetitive lung lavages followed by initial PET and computed tomography (CT) scans. Animals were then ventilated according to the acute respiratory distress syndrome (ARDS) network recommendations, using the lowest combinations of positive end-expiratory pressure and inspiratory oxygen fraction that allowed adequate oxygenation. Ventilator settings were checked and adjusted hourly. Physiological measurements were conducted every 6 h. Lung imaging was repeated 24 h after first PET/CT before animals were killed. Pulmonary neutrophilic inflammation was assessed by normalized uptake rate of 2-deoxy-2-[18F]fluoro-D-glucose (KiS), and its difference between the two PET/CT was calculated (ΔKiS). Lung aeration was assessed by lung CT scan. MP was calculated from the recorded pressure-volume curve. Statistics included the Wilcoxon tests and non-parametric Spearman correlation. Results: Normalized 18F-FDG uptake rate increased significantly from first to second PET/CT (p = 0.012). ΔKiS significantly correlated with median MP (ρ = 0.738, p = 0.037) and its elastic and resistive components, but neither with median peak, plateau, end-expiratory, driving, and transpulmonary driving pressures, nor respiratory rate (RR), elastance, or resistance. Lung mass and volume significantly decreased, whereas relative mass of hyper-aerated lung compartment increased after 24 h (p = 0.012, p = 0.036, and p = 0.025, respectively). Resistance and PaCO2 were significantly higher (p = 0.012 and p = 0.017, respectively), whereas RR, end-expiratory pressure, and MP were lower at 18 h compared to start of intervention. Conclusions: In this model of experimental acute lung injury in pigs, pulmonary neutrophilic inflammation evaluated by PET/CT increased after 24 h of MV, and correlated with MP.
RESUMEN
Background: The incidence of hypoxemia during one-lung ventilation (OLV) is as high as 10%. It is also partially determined by the distribution of perfusion. During thoracic surgery, different body positions are used, such as the supine, semilateral, lateral, and prone positions, with such positions potentially influencing the distribution of perfusion. Furthermore, hypovolemia can impair hypoxic vasoconstriction. However, the effects of body position and hypovolemia on the distribution of perfusion remain poorly defined. We hypothesized that, during OLV, the relative perfusion of the ventilated lung is higher in the lateral decubitus position and that hypovolemia impairs the redistribution of pulmonary blood flow. Methods: Sixteen juvenile pigs were anesthetized, mechanically ventilated, submitted to a right-sided thoracotomy, and randomly assigned to one of two groups: (1) intravascular normovolemia or (2) intravascular hypovolemia, as achieved by drawing ~25% of the estimated blood volume (n = 8/group). Furthermore, to mimic thoracic surgery inflammatory conditions, Escherichia coli lipopolysaccharide was continuously infused at 0.5 µg kg-1 h-1. Under left-sided OLV conditions, the animals were further randomized to one of the four sequences of supine, left semilateral, left lateral, and prone positioning. Measurements of pulmonary perfusion distribution with fluorescence-marked microspheres, ventilation distribution by electrical impedance tomography, and gas exchange were then performed during two-lung ventilation in a supine position and after 30 min in each position and intravascular volume status during OLV. Results: During one-lung ventilation, the relative perfusion of the ventilated lung was higher in the lateral than the supine position. The relative perfusion of the non-ventilated lung was lower in the lateral than the supine and prone positions and in semilateral compared with the prone position. During OLV, the highest arterial partial pressure of oxygen/inspiratory fraction of oxygen (PaO2/F I O 2) was achieved in the lateral position as compared with all the other positions. The distribution of perfusion, ventilation, and oxygenation did not differ significantly between normovolemia and hypovolemia. Conclusions: During one-lung ventilation in endotoxemic pigs, the relative perfusion of the ventilated lung and oxygenation were higher in the lateral than in the supine position and not impaired by hypovolemia.
RESUMEN
BACKGROUND: Flow-controlled ventilation (FCV) allows expiratory flow control, reducing the collapse of the airways during expiration. The performance of FCV during one-lung ventilation (OLV) under intravascular normo- and hypovolaemia is currently unknown. In this explorative study, we hypothesised that OLV with FCV improves PaO2 and reduces mechanical power compared to volume-controlled ventilation (VCV). Sixteen juvenile pigs were randomly assigned to one of two groups: (1) intravascular normovolaemia (n = 8) and (2) intravascular hypovolaemia (n = 8). To mimic inflammation due to major thoracic surgery, a thoracotomy was performed, and 0.5 µg/kg/h lipopolysaccharides from Escherichia coli continuously administered intravenously. Animals were randomly assigned to OLV with one of two sequences (60 min per mode): (1) VCV-FCV or (2) FCV-VCV. Variables of gas exchange, haemodynamics and respiratory signals were collected 20, 40 and 60 min after initiation of OLV with each mechanical ventilation mode. The distribution of ventilation was determined using electrical impedance tomography (EIT). RESULTS: Oxygenation did not differ significantly between modes (P = 0.881). In the normovolaemia group, the corrected expired minute volume (P = 0.022) and positive end-expiratory pressure (PEEP) were lower during FCV than VCV. The minute volume (P ≤ 0.001), respiratory rate (P ≤ 0.001), total PEEP (P ≤ 0.001), resistance of the respiratory system (P ≤ 0.001), mechanical power (P ≤ 0.001) and resistive mechanical power (P ≤ 0.001) were lower during FCV than VCV irrespective of the volaemia status. The distribution of ventilation did not differ between both ventilation modes (P = 0.103). CONCLUSIONS: In a model of OLV in normo- and hypovolemic pigs, mechanical power was lower during FCV compared to VCV, without significant differences in oxygenation. Furthermore, the efficacy of ventilation was higher during FCV compared to VCV during normovolaemia.
RESUMEN
INTRODUCTION: Compared with the typical onset of type 2 diabetes in middle age or older, type 2 diabetes with early age of onset has a higher risk of diabetes-related complications. It is unclear whether the early age of diabetes diagnosis would affect the development of end-stage renal disease (ESRD) in patients with diabetic kidney disease (DKD) who are at higher risk of ESRD. METHODS: We enrolled 1,111 type 2 diabetes patients with DKD in this study. We used the age at diabetes diagnosis of younger than 40 years to define early-onset diabetes and 40 years or older to define late-onset diabetes. Medical history, anthropometry, and laboratory indicators were documented. ESRD was defined by estimated glomerular filtration rate (eGFR) of less than 15 mL/min/1.73 m2 or dialysis. Logistic regression analysis was used to explore the association between early-onset diabetes and ESRD. RESULTS: Early-onset diabetes patients had a longer diabetes duration, higher body mass index, and worse blood lipid metabolism profile. Compared with late-onset diabetes patients, patients with early-onset diabetes had a prevalence of ESRD that was twofold higher (9.2% vs 4.3%; P = .009). Univariate analysis showed that early-onset diabetes was a risk factor for ESRD in patients with DKD (P < .05). In multivariate logistic regression analysis, even after adjusting for sex, traditional metabolic factors, drug factors, and diabetes duration, the risk of ESRD in patients with early-onset diabetes was still 3.58-fold higher than in subjects with late-onset (95% CI, 1.47-8.74; P = .005). CONCLUSIONS: In patients with DKD, early-onset type 2 diabetes is an independent risk factor of ESRD.
Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Nefropatías Diabéticas/epidemiología , Fallo Renal Crónico/epidemiología , Adulto , Edad de Inicio , China/epidemiología , Estudios Transversales , Diabetes Mellitus Tipo 2/fisiopatología , Progresión de la Enfermedad , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de RiesgoRESUMEN
We aim to explore the relationship between early-onset diabetes and proliferative diabetic retinopathy (PDR) in type 2 diabetes mellitus (T2DM) patients with microalbuminuria.A total of 461 T2DM patients with microalbuminuria were enrolled. Subjects were defined as early-onset or late-onset based on the age at which they were diagnosed with diabetes (<40 and ≥40 years, respectively). Medical history, anthropometry, and laboratory indicators were documented. PDR was defined as the presence of any of the following changes on fundus photography: neovascularization, vitreous hemorrhage, or preretinal hemorrhage.The prevalence of PDR was 6-fold higher in patients with early-onset than late-onset T2DM [(6.1% vs 1.0%), Pâ=â.004]. Univariate correlation analysis showed that early-onset diabetes, use of oral hypoglycemic drugs, and insulin therapy were risk factors for PDR. In multivariate logistic analysis, patients with early-onset diabetes exhibited a 7.00-fold [(95% confidence interval 1.40-38.26), Pâ=â.019] higher risk of PDR than subjects with late-onset diabetes after adjusting for sex; T2DM duration; systolic blood pressure; total triglyceride; glycated hemoglobin; insulin therapy; and the use of oral hypoglycemic drugs, antihypertensive drugs, and lipid-lowering drugs.In T2DM patients with microalbuminuria, early-onset diabetes is an independent risk factor for the development of PDR.
Asunto(s)
Albuminuria/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Retinopatía Diabética/epidemiología , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Albuminuria/clasificación , Antihipertensivos/uso terapéutico , Presión Sanguínea , Pesos y Medidas Corporales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Hemoglobina Glucada , Humanos , Hipoglucemiantes/uso terapéutico , Hipolipemiantes/uso terapéutico , Lípidos/sangre , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto JovenRESUMEN
AIMS: We sought to reveal the key molecular signature in subcutaneous adipose tissue (scAT) following Roux-en-Y gastric bypass (RYGB), through bioinformatics analysis and further verification in vivo. MAIN METHODS: We obtained a transcriptome data of scAT from RYGB and sham-operated rats from the Gene Expression Omnibus. The differentially expressed genes (DEGs) were screened and the DEGs-related Gene ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Also, the protein-protein interaction (PPI) network was constructed among the DEGs. Furthermore, we established an experimental rat model to verify the bioinformatics findings. KEY FINDINGS: Using the method of bioinformatics, a total of 602 genes were found to be differentially expressed in scAT between the RYGB group and the sham-operated group. GO analysis showed that DEGs were significantly enriched in extracellular matrix(ECM) -associated functions or processes. KEGG pathway analysis revealed that the protein digestion and absorption pathway and ECM-receptor interaction pathway were the most significantly enriched pathways. The genes encoding ECM components and ECM remodeling-related proteins interact substantially in the PPI network. Then the results of rat experimental verified that the gene expression levels of ECM components(Collagen I and III) and ECM cross-linking related proteins(lysyl oxidase and lysyl oxidase-like 1) decreased and ECM dagradation-related proteins increased in scAT following RYGB. These beneficial results were positively associated with improved insulin resistance (IR). SIGNIFICANCE: Appropriate ECM remodeling, primarily the reduction of ECM deposition and cross-linking and the increase of ECM dagradation, may be the key molecular signature in scAT following RYGB.
Asunto(s)
Biomarcadores/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Derivación Gástrica , Grasa Subcutánea/metabolismo , Transcriptoma , Animales , Biología Computacional , Proteínas de la Matriz Extracelular/genética , Masculino , Mapas de Interacción de Proteínas , Ratas , Ratas Sprague-Dawley , Grasa Subcutánea/cirugíaRESUMEN
OBJECTIVE: Autophagy is a dynamic process that allows recycling of long-lived proteins and damaged organelles into biosynthetic materials for maintaining the normal cellular homeostasis. Recently, accumulating evidence has indicated that autophagy played important roles in the pathogenesis of neuronal diseases. In this article, the research progress of autophagy in the pathogenesis and regulation mechanism of common nervous system diseases were reviewed to deepen the understanding of autophagy, and arouse researchers' attention on dynamic regulation of autophagy and alleviating autophagic flow injury.
Asunto(s)
Autofagia , Enfermedades del Sistema Nervioso/patología , HumanosRESUMEN
BACKGROUND/AIMS: Bone morphogenetic proteins (BMPs) and BMP receptors widely participate in osteolytic metastasis of breast cancer, while their role in tumor-stromal interaction is largely unknown. In this study, we investigated whether BMP receptor type 1a (BMPR1a) can alter the interaction between metastatic cancer cells and osteoclast precursors. METHODS: Adenovirus-mediated RNA interference was used to interrupt target genes of human breast cancer cell lines and nude mice were injected intratibially with the cancer cells. Tumor-bearing mice were examined by bioluminescence imaging and microCT. Sections of metastatic legs were measured by a series of staining methods. Murine bone marrow mononuclear cells or RAW264.7 cells were cultured with conditioned media of breast cancer cells. RT-PCR, Western blotting and ELISA were used to test mRNA and protein expressions of target molecules. RESULTS: Expression of BMPR1a of MDA-MB-231-luc cells at tumor-bone interface was apparently stronger than that of cancer cells distant from the interface. Mice injected with BMPR1a-knockdown MDA-MB-231-luc cells showed reduced tumor growth and bone destruction compared with control groups. Knockdown (KD) of BMPR1a of MDA-MB-231-luc cells or MCF-7 cells decreased the level of receptor activator for NF-κB ligand (RANKL). Level of RANKL in MDA-MB-231-luc cells or MCF-7 cells was reduced by p38 inhibitor. Compared with control group, knockdown of p38 of breast cancer cells decreased cancer-induced osteoclastogenesis. CONCLUSION: Knockdown of BMPR1a of breast cancer cells suppresses their production of RANKL via p38 pathway and inhibits cancer-induced osteoclastogenesis, which indicates that BMPR1a might be a possible target in breast cancer-induced osteolytic metastasis.
Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Neoplasias de la Mama/patología , Ligando RANK/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/antagonistas & inhibidores , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Huesos/metabolismo , Huesos/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Imidazoles/farmacología , Células MCF-7 , Ratones , Ratones Desnudos , Osteogénesis/efectos de los fármacos , Piridinas/farmacología , Células RAW 264.7 , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Tibia/diagnóstico por imagen , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Tetrandrine (TET) is a natural product isolated from the Chinese herb Stephania tetrandra S. Moore and has been reported to have antiproliferation and apoptosis-inducing activity in various malignant tumor cells. However, the exact molecular mechanisms underlying these effects remain unclear. In the present study, we tested the antiproliferation effect of TET on osteosarcoma (OS) 143B cells and explored the possible potential molecular mechanism in this process. Using CCK-8 assay and flow cytometry, we found that TET inhibited proliferation, induced apoptosis and arrested the cell cycle of the 143B cells. Using a xenograft tumor model of human OS, tetrandrine was found to inhibit tumor growth in vivo. TET increased the protein level of phosphatase and tensin homolog (PTEN) and decreased its phosphorylation as detected by western blot analysis and immunohistochemistry.Overexpression of PTEN strengthened the anticancer effect of TET, while knockdown of PTEN attenuated it. Meanwhile, TET activated p38 MAPK and increased its phosphorylation. Our findings suggest that TET may be a potential anticancer drug for OS. In addition, its effects may be mediated by the upregulation of PTEN. Moreover the expression alteration of PTEN and p-PTEN was mediated by the TET-induced activation of p38 MAPK in a direct or indirect manner.
Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Bencilisoquinolinas/administración & dosificación , Neoplasias Óseas/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Fosfohidrolasa PTEN/metabolismo , Regulación hacia Arriba , Animales , Antineoplásicos Fitogénicos/farmacología , Bencilisoquinolinas/farmacología , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Osteosarcoma/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression. They play an important role in various cellular processes such as apoptosis, differentiation, secretion, and proliferation. Embryonic stem cells (ESCs) are derived from the inner cell mass of the blastocyst stage of the embryo. miRNAs are critical factors for the self-renewal and differentiation of ESCs. In this review, we will focus on the role of miRNAs in the self-renewal and directional differentiation of ESCs. We will present the current knowledge on key points related to miRNA biogenesis and their function in ESCs.
Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias Humanas/metabolismo , MicroARNs/metabolismo , Animales , Células Madre Embrionarias Humanas/citología , HumanosRESUMEN
Intrahepatic stone is prevalent in Asian countries; though the incidence declines in recent years, the number of patients is still in a large quantity. Because of multiple complications, high recurrence rates, serious systemic damage, and a lack of extremely effective procedure for the management, it is more important to find out the etiology and pathogenesis of intrahepatic stones to prevent the disease from happening and developing rather than curing. A number of factors contribute to the development of the disease, such as cholestasis, infection, and anatomic abnormity of bile duct and bile metabolic defect. The four factors and possible pathogenesis will be discussed in detail in the review.
RESUMEN
Although multiple chemotherapeutic agents have been used for osteosarcoma (OS) treatment, their mechanisms need further study. Ursolic acid (UA), a pentacyclic triterpenoid, can reduce cell proliferation and induce apoptosis in various cancer cells, such as OS. However, the exact mechanism underlying this function remains unclear. In this study, we investigated the antiproliferative effect of UA in human OS 143B cells and dissected the possible molecular mechanism underlying this effect. We demonstrated that UA can reduce cell proliferation, induce apoptosis and arrest cell cycle in 143B cells, as well as inhibit OS tumor growth in a mouse xenograft model. Using a luciferase reporter assay, we found that the Wnt/ßcatenin signaling is inhibited by UA in 143B cells. Correspondingly, the expression level and nuclear translocation of ßcatenin are both decreased by UA. Exogenous expression of ßcatenin attenuates the anticancer effect of UA in 143B cells, while knockdown of ßcatenin enhances this effect. UA increases the expression level of p53 in a concentrationdependent manner, and inhibition of p53 reduces the anticancer effect of UA in 143B cells. Moreover, inhibition of p53 partly reverses the UAinduced downregulation of ßcatenin, as do the targets of Wnt/ßcatenin signaling, such as cMyc and cyclin D1. Our findings indicated that UA can inhibit the proliferation of 143B OS cells through inactivation of Wnt/ß-catenin signaling, which may be mediated partly by upregulating the expression of p53.