Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Intervalo de año de publicación
2.
J Ethnopharmacol ; 309: 116269, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36863639

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke (IS) has both high morbidity and mortality. Previous research conducted by our group demonstrated that the bioactive ingredients of the traditional medicinal and edible plant Cistanche tubulosa (Schenk) Wight (CT) have various pharmacological effects in treating nervous system diseases. However, the effect of CT on the blood-brain barrier (BBB) after IS are still unknown. AIM OF THE STUDY: This study aimed to identify CT's curative effect on IS and explore its underlying mechanism. MATERIALS AND METHODS: IS injury was established in a rat model of middle cerebral artery occlusion (MCAO). Gavage administration of CT at dosages of 50, 100, and 200 mg/kg/day was carried out for seven consecutive days. Network pharmacology was used for predicting the pathways and potential targets of CT against IS, and subsequent studies confirmed the relevant targets. RESULTS: According to the results, both neurological dysfunction and BBB disruption were exacerbated in the MCAO group. Moreover, CT improved BBB integrity and neurological function and protected against cerebral ischemia injury. Network pharmacology revealed that IS might involve neuroinflammation mediated by microglia. Extensive follow-up studies verified that MCAO caused IS by stimulating the production of inflammatory factors and microglial infiltration. CT was found to influence neuroinflammation via microglial M1-M2 polarization. CONCLUSION: These findings suggested that CT may regulate microglia-mediated neuroinflammation by reducing MCAO-induced IS. The results provide theoretical and experimental evidence for the efficacy of CT therapy and novel concepts for the prevention and treatment of cerebral ischemic injuries.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Cistanche , Accidente Cerebrovascular Isquémico , Ratas , Animales , Microglía , Barrera Hematoencefálica , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Enfermedades Neuroinflamatorias , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/metabolismo
3.
Food Funct ; 14(8): 3488-3508, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37000613

RESUMEN

Cognitive impairment is the main central nervous system complication of diabetes, affecting the quality of life of patients. Herba Cistanche is a homologous plant widely used as a health food and therapeutic drug. Verbascoside, a signature component of Herba Cistanche, has anti-diabetic and neuroprotective effects. However, it is quickly metabolized by the gut microbiota, and the mechanism of its neuroprotection and improvement of learning and memory remains unclear. We investigated the effectiveness and potential mechanisms of verbascoside on cognitive dysfunction in db/db mice using a 16S rRNA microbiome and serum metabolomics approach. We found that 12-week treatment with verbascoside significantly inhibited insulin resistance, reduced blood glucose and lipids, and improved cognitive deficits. In addition, verbascoside increased the gut microbiota diversity, improved intestinal dysbiosis, attenuated intestinal barrier disruption, reduced the levels of inflammatory factors, regulated the expression of the metabolites associated with cognitive function, and enhanced the central insulin sensitivity and hippocampal synaptogenesis signaling. We revealed that verbascoside induced the enrichment of Alistipes, Roseburia, and Intestinimonas in the gut, suppressed the abundance of Escherichia-Shigella, increased the serum levels of gamma-aminobutyric acid, L-glutamic acid, and L-lysine, and decreased taurine expression. Finally, a strong association between gut microbes, serum metabolites, and cognitive performance affected by verbascoside was observed. Our research suggests that alterations in gut microbes/metabolites are involved in the development of diabetic cognitive dysfunction, which is alleviated by verbascoside in the db/db mice through restructuring the gut microbiota composition, ameliorating diabetic metabolic disorders, and attenuating pathological brain damage.


Asunto(s)
Disfunción Cognitiva , Microbioma Gastrointestinal , Resistencia a la Insulina , Ratones , Animales , ARN Ribosómico 16S , Calidad de Vida , Disfunción Cognitiva/tratamiento farmacológico
4.
Phytomedicine ; 108: 154540, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36379093

RESUMEN

BACKGROUND: Neuroglia are important modulators of neuronal functionality, and thus play an integral role in the pathogenesis and treatment of neuropathic pain (NP). According to traditional Chinese medicine, Frankincense-Myrrh is capable of "activating blood and dissipating blood stasis", and as such these two biological compounds are commonly used to treat NP, however, the mechanisms underlying the efficacy of such treatment are unclear. PURPOSE: This study aimed to further elucidate the protective effects associated with the Frankincense-Myrrh treatment of NP. METHODS: A chronic sciatic nerve compression injury (CCI) model of NP was established, after which animals were gavaged with Frankincense, Myrrh, Frankincense-Myrrh, or the positive control drug pregabalin for 14 days. Network pharmacology approaches were used to identify putative pathways and targets associated with the Frankincense-Myrrh-mediated treatment of NP, after which these targets were subjected to in-depth analyses. The impact of TLR4 blockade on NP pathogenesis was assessed by intrathecally administering a TLR4 antagonist (LRU) or the MyD88 homodimerization inhibitory peptide (MIP). RESULTS: Significant alleviation of thermal and mechanical hypersensitivity in response to Frankincense and Myrrh treatment was observed in NP model mice, while network pharmacology analyses suggested that the pathogenesis of NP may be related to TLR4/MyD88-mediated neuroinflammation. Consistently, Frankincense-Myrrh treatment was found to reduce TLR4, MyD88, and p-p65 expression in spinal dorsal horn neuroglia from treated animals, in addition to inhibiting neuronal TRPV1 and inflammatory factor expression. Intrathecal LRU and MIP delivery were sufficient to alleviate thermal and mechanical hyperalgesia in these CCI model mice, with concomitant reductions in neuronal TRPV1 expression and neuroglial activation in the spinal dorsal horn. CONCLUSION: These data suggest that Frankincense-Myrrh treatment was sufficient to alleviate NP in part via inhibiting TLR4/MyD88 pathway and TRPV1 signaling activity. Blocking TLR4 and MyD88 activation may thus hold value as a means of treating NP.


Asunto(s)
Boswellia , Olíbano , Neuralgia , Ratones , Animales , Olíbano/química , Olíbano/metabolismo , Olíbano/farmacología , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Commiphora , Resinas de Plantas/química , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuroglía , Hiperalgesia , Canales Catiónicos TRPV
5.
ACS Omega ; 7(24): 21207-21219, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35755398

RESUMEN

An exothermic reaction in a semibatch reactor can potentially cause thermal runaway due to evolved energy accumulation or a secondary reaction. This research aims to propose safety criteria for solid-liquid reactions in semibatch reactors. Simulation modeling was carried out to build thermal runaway criteria for solid-liquid reactions in semibatch reactors. A new model for the energy and mass balance of solid-liquid reactions was successfully established. Criteria for the safety boundary diagram and the temperature diagram were ameliorated for solid-liquid reactions. The results showed that the dissolution heat has a great influence on the thermal behavior of the reaction. Experiments to neutralize citric acid and sodium hydroxide were carried out to determine the critical parameters for the neutralization reaction using the temperature diagram criterion. The proposed criteria would be reasonably expected to provide some guidance for chemical process optimization and safety design for engineering.

6.
Int. j. morphol ; 39(6): 1635-1645, dic. 2021.
Artículo en Inglés | LILACS | ID: biblio-1385530

RESUMEN

SUMMARY: Marein is the main active substance of Coreopsis tinctoria nutt. It not only has anti-oxidation and anti-tumor effects, but also can lower blood lipid, prevent high blood glucose, improve insulin resistance, inhibit gluconeogenesis and promote glycogen synthesis. However, the exact mechanism of its action is still unclear. Here, we explored the effect and mechanism of Marein on insulin resistance. The mice were divided into db/m, db/db, metformin+db/db, and marein+db/db groups. The body weight and kidney weight were recorded. Serum biochemical and renal function tests were measured after 8 weeks of continuous administration. Kidney tissues were subjected to HE staining, PAS staining, and Masson staining. The effect of marein on PI3K/Akt signal and autophagy pathway was detected by Western blot. After 8 weeks of Marein intervention, the body weight and kidney weight of mice did not change significantly, but the fasting blood glucose and blood lipid levels were significantly reduced than db/db group. Marein significantly improved the insulin resistance index, increased serum adiponectin and improved glucose and lipid metabolism disorders of db/db mice. Moreover, marein improved the basement membrane thickness of glomeruli and tubules, improved glomerular sclerosis and tubular fibrosis, as well as renal insufficiency, thereby protecting kidney function and delaying the pathological damage. Furthermore, marein increased the expression of PI3K and the phosphorylation of Akt/Akt (Ser473), and promoted the expression of LC3II/I, Beclin1 and ATG5. Additionally, it promoted the expression of FGFR1 in the kidney of db/db mice, and promoted the increase of serum FGF21 and FGF23. Marein has a protective effect on the kidneys of diabetic mice. It protects diabetic nephropathy by regulating the IRS1/PI3K/Akt signaling pathway to improve insulin resistance. Therefore, marein may be an insulin sensitizer.


RESUMEN: Marein es la principal sustancia activa de Coreopsis tinctoria nutt. No solo tiene efectos antioxidantes y antitumorales, sino que también puede reducir los lípidos en sangre, prevenir la glucemia alta, mejorar la resistencia a la insulina, inhibir la gluconeogénesis y promover la síntesis de glucógeno. Sin embargo, el mecanismo exacto de su acción aún no está claro. Se analizó el efecto y el mecanismo de Marein sobre la resistencia a la insulina. Los ratones se dividieron en grupos db / m, db / db, metformina + db / db y mareína + db / db. Se registró el peso corporal y el peso de los riñones. Se midieron las pruebas de función renal y bioquímica sérica después de 8 semanas de administración continua. Los tejidos renales se sometieron a tinción HE, tinción PAS y tinción Masson. El efecto de la mareína sobre la señal de PI3K / Akt y la vía de autofagia se detectó mediante Western blot. Al término de 8 semanas de tratamiento con mareína, el peso corporal y el peso de los riñones de los ratones no cambiaron significativamente, pero los niveles de glucosa en sangre y lípidos en sangre en ayunas se redujeron significativamente en relación a los del grupo db / db. Marein mejoró significativamente el índice de resistencia a la insulina, aumentó la adiponectina sérica y mejoró los trastornos del metabolismo de la glucosa y los lípidos de los ratones db / db. Además, la mareína mejoró el grosor de la membrana basal de los glomérulos y túbulos, mejoró la esclerosis glomerular y la fibrosis tubular, así como la insuficiencia renal, protegiendo la función renal y retrasando el daño patológico. Además, la mareína aumentó la expresión de PI3K y la fosforilación de Akt / Akt (Ser473), y promovió la expresión de LC3II / I, Beclin1 y ATG5. Además, promovió la expresión de FGFR1 en el riñón de ratones db / db y el aumento de FGF21 y FGF23 en suero. Marein tiene un efecto protector sobre los riñones de ratones diabéticos. Protege la nefropatía diabética regulando la vía de señalización IRS1 / PI3K / Akt para mejorar la resistencia a la insulina. Por tanto, la mareína puede ser un sensibilizador a la insulina.


Asunto(s)
Animales , Ratones , Resistencia a la Insulina , Chalconas/administración & dosificación , Nefropatías Diabéticas , Autofagia/efectos de los fármacos , Glucemia , Peso Corporal/efectos de los fármacos , Inmunohistoquímica , Western Blotting , Lípidos/sangre
7.
Front Pharmacol ; 12: 796224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35082676

RESUMEN

Frankincense-Myrrh is a classic drug pair that promotes blood circulation, and eliminates blood stasis. The combination of the two drugs has a definite clinical effect on the treatment of cerebrovascular diseases (CBVDs), but its mechanism of action and compatibility have not been elucidated. In this study, the bioactive components, core targets, and possible synergistic mechanisms of Frankincense-Myrrh in the treatment of CBVDs are explored through systems pharmacology combined with in vivo and in vitro experiments. Comparing target genes of components in Frankincense and Myrrh with CBVD-related genes, common genes were identified; 15 core target genes of Frankincense-Myrrh for the treatment of CBVDs were then identified using protein-protein interaction (PPI) analysis. It was also predicted through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis that the molecular mechanism of Frankincense-Myrrh action on CBVDs was mainly related to the regulation of neurotrophic factors and inflammatory responses. Frankincense-Myrrh significantly improved neurological function, decreased infarct volume, alleviated histopathological damage, inhibited microglial expression, and promoted the expression of neurons in middle cerebral artery occlusion (MCAO)-induced rats. The results of this study not only provide important theoretical support and experimental basis for the synergistic effect of Frankincense-Myrrh, but also provide new ideas for the prevention and treatment of cerebral ischemic injuries.

8.
Environ Res ; 194: 110493, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33217436

RESUMEN

The effect of early childhood exposure to traffic-related air pollution (TRAP) on the development of asthma remains unclear. The aim of this study was to clarify potential associations between TRAP (fine particulate matter, PM2.5; nitrogen dioxide, NO2; Benzene and total volatile organic pollutants, TVOCs) and childhood asthma by integrating the results from previous studies. Elsevier, LISTA (EBSCO) and Web of Science databases were searched for relevant studies. Adjusted odds ratio (OR) with corresponding 95% confidence interval (CI) for the association between traffic-related air pollutants and health effects were recovered from individual studies and summary effect estimates (meta-OR) were generated in Review Manager 5.3. Twenty-seven studies were included in the meta-analysis and the results showed that TRAP increased the risk of asthma among children: PM2.5 (meta-OR = 1.07, 95% CI:1.00-1.13), NO2 (meta-OR = 1.11, 95% CI:1.06-1.17), Benzene (meta-OR: 1.21, 95% CI:1.13-1.29) and TVOC (meta-OR:1.06, 95% CI: 1.03-1.10). Sensitivity analyses supported these findings. In addition, regional analysis showed that ORs of inorganic TRAP (PM2.5 and NO2) on the risk of childhood asthma were significantly higher in Asia than those in Europe and North America. Subsequent research should focus on the association between organic pollutants in TRAP and childhood asthma. Furthermore, the disentanglement between TRAP and other pollutant sources may be investigated in future studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Asia , Asma/inducido químicamente , Asma/epidemiología , Niño , Preescolar , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Europa (Continente) , Humanos , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , América del Norte , Material Particulado/toxicidad
9.
Biomed Pharmacother ; 131: 110684, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33152903

RESUMEN

Marein, an active component of the Coreopsis tinctoria Nutt. plant, is known to improve diabetic nephropathy (DN). However, its anti-diabetic functions in DN and potential mechanisms remain unclear. The aim of this study was to elucidate the effects and mechanisms of Marein in diabetic db/db mice with DN, and in high glucose-treated HK-2 cells. In vivo, treating diabetic db/db mice with Marein for 12 consecutive weeks restored diabetes-induced hyperglycemia and dyslipidemia, and ameliorated renal function deterioration, glomerulosclerosis, and renal ectopic lipid deposition. Marein exerted renoprotective effects by directly inhibiting renal tubule sodium glucose transporter 2 (SGLT2) expression, and then activating the AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase (ACC)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) pathway in db/db mice. Meanwhile, Marein ameliorated fibrosis and inflammation by suppressing the pro-inflammatory factors interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1), and expression of the extracellular matrix proteins, fibronectin (FN) and collagen 1 (COL1) in diabetic mice. In vitro, MDCK monolayer cells were established to explore the characteristics of Marein transmembrane transport. Marein was found to be absorbed across the membrane at a medium level that involved active transport and this was mediated by SGLTs. In HK-2 cells, Marein decreased uptake of the fluorescent glucose analog, 2-NBDG, by 22 % by inhibiting SGLT2 expression. In high glucose-treated HK-2 cells, Marein decreased SGLT2 expression and increased phosphorylated (p)-AMPK/p-ACC to improve high glucose-induced cellular dysfunction. Furthermore, Marein treatment decreased SGLT2 expression in SGLT2-overexpressing HK-2 cells. In addition, molecular docking and dynamics analysis revealed that SGLT2 was a direct target of Marein. Collectively, our results demonstrated that Marein ameliorates DN by inhibiting renal SGLT2 and activating p-AMPK, suggesting Marein can potentially prevent DN by suppressing renal SGLT2 expression directly.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Chalconas/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Glucemia/análisis , Células Cultivadas , Chalconas/química , Chalconas/farmacocinética , Chalconas/farmacología , Diabetes Mellitus Experimental/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Florizina/farmacología , Transducción de Señal/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/química
10.
Rev Sci Instrum ; 91(3): 034104, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32259947

RESUMEN

We have designed, built, and tested a climate-controlled, radiation-shielded incubator cabinet for the purpose of analyzing the effects of low-dose x-ray radiation on biological tissues and cell cultures. Bremsstrahlung x rays incident on exchangeable fluorescence plates produce strong, quasi-monochromatic radiation directed toward a small container of biological samples. The x-ray source, sample, and detector are enclosed in an incubator-maintaining the optimal environment for biological samples to increase longevity to a maximum of 72 h. To demonstrate the capabilities of the setup, an example experiment is presented. Rat vascular smooth muscle cell growth was observed after irradiation with characteristic x rays of iron, copper, and calcium to impart doses of 2 mGy each. Cultures show significant spectrum dependent increases in cell number over controls at 48 h after irradiation. The experiment lends credence to the efficacy of the apparatus and shows promise for future low-dose bio-radiation studies.


Asunto(s)
Técnicas de Cultivo de Célula , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Manejo de Especímenes , Animales , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Dosis de Radiación , Ratas , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...