Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Lancet Reg Health Southeast Asia ; 28: 100463, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39301268

RESUMEN

The growing health challenges in South Asia require further adaptations of community health worker (CHW) programs as a key element of primary health care (PHC). This paper provides a comparative analysis of CHW programs in five countries (Bangladesh, India, Nepal, Pakistan, and Sri Lanka), examines successes and challenges, and suggests reforms to better ensure highly performing CHW programs. To examine CHW programs in the region, we conducted a narrative review of the peer-reviewed and grey literatures, as well as eliciting opinions from experts. Common roles of CHWs include health education, community mobilization, and community-based services, particularly related to reproductive, maternal, neonatal, and child health. Some countries utilize CHWs for non-communicable diseases and other emerging health issues. To maximize the potential contribution of CHWs to achieving Universal Health Coverage, we recommend future research and policy focus on strengthening existing health systems to support the expansion of CHWs roles and better integrating of CHWs into national PHC systems. This is Paper 4 in the Series on Primary Health Care in South Asia, addressing areas that have the potential to revitalize health systems in South Asian countries. Funding: The authors received financial support from the Department of Health Systems Development, WHO South-East Asia Regional Office (WHO SEAR).

2.
Cell ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276774

RESUMEN

Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.

3.
Signal Transduct Target Ther ; 9(1): 199, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39117617

RESUMEN

High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8+ T cells. Using IFN-γ production as a proxy for CD8+ T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8+ T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8+ T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8+ memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8+ T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes (Tcf7, Socs3, Junb, and Zfp36) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8+ T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Linfocitos T CD8-positivos , Proteínas con Dominio LIM , Factor de Transcripción STAT3 , Transducción de Señal , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/inmunología , Linfocitos T CD8-positivos/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Humanos , Transducción de Señal/inmunología , Transducción de Señal/genética , Interleucinas/genética , Interleucinas/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología
4.
Nat Commun ; 15(1): 451, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200005

RESUMEN

Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.


Asunto(s)
Autofagia , Linfocitos T CD8-positivos , Humanos , Animales , Ratones , Dinoprostona , Genes Mitocondriales , Glutatión
5.
iScience ; 26(10): 107719, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37674984

RESUMEN

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

6.
Gut ; 72(10): 1971-1984, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37541771

RESUMEN

OBJECTIVE: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. DESIGN: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. RESULTS: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. CONCLUSION: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies.


Asunto(s)
Hepatitis B Crónica , Hepatitis C Crónica , Hepatitis C , Humanos , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Antivirales/uso terapéutico , Infección Persistente , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/metabolismo , Hepatitis C/tratamiento farmacológico , Virus de Hepatitis , Virus de la Hepatitis B
7.
Indian J Thorac Cardiovasc Surg ; 39(4): 417-420, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37346429

RESUMEN

Congenital pulmonary airway malformation (CPAM) is congenital pulmonary anomaly characterized by multicystic areas, over-distension, and proliferation of terminal bronchioles with lack of normal alveoli. Clinical presentation may vary from mild respiratory symptoms to severe respiratory distress and frequent pneumothoraxes. We report a rare case of neonatal CPAM type I manifested with neonatal respiratory distress and pneumothorax, which was managed successfully with left lower lobectomy. Supplementary Information: The online version contains supplementary material available at 10.1007/s12055-023-01510-x.

8.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993703

RESUMEN

Immune cells must adapt to different environments during the course of an immune response. We studied the adaptation of CD8 + T cells to the intestinal microenvironment and how this process shapes their residency in the gut. CD8 + T cells progressively remodel their transcriptome and surface phenotype as they acquire gut residency, and downregulate expression of mitochondrial genes. Human and mouse gut-resident CD8 + T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We found that the intestinal microenvironment is rich in prostaglandin E 2 (PGE 2 ), which drives mitochondrial depolarization in CD8 + T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE 2 sensing promotes CD8 + T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell population. Thus, a PGE 2 -autophagy-glutathione axis defines the metabolic adaptation of CD8 + T cells to the intestinal microenvironment, to ultimately influence the T cell pool.

9.
Sci Immunol ; 7(76): eadd3263, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36240286

RESUMEN

Type 2 immunity is associated with adipose tissue (AT) homeostasis and infection with parasitic helminths, but whether AT participates in immunity to these parasites is unknown. We found that the fat content of mesenteric AT (mAT) declined in mice during infection with a gut-restricted helminth. This was associated with the accumulation of metabolically activated, interleukin-33 (IL-33), thymic stromal lymphopoietin (TSLP), and extracellular matrix (ECM)-producing stromal cells. These cells shared transcriptional features, including the expression of Dpp4 and Pi16, with multipotent progenitor cells (MPC) that have been identified in numerous tissues and are reported to be capable of differentiating into fibroblasts and adipocytes. Concomitantly, mAT became infiltrated with resident T helper 2 (TH2) cells that responded to TSLP and IL-33 by producing stromal cell-stimulating cytokines, including transforming growth factor ß1 (TGFß1) and amphiregulin. These TH2 cells expressed genes previously associated with type 2 innate lymphoid cells (ILC2), including Nmur1, Calca, Klrg1, and Arg1, and persisted in mAT for at least 11 months after anthelmintic drug-mediated clearance of infection. We found that MPC and TH2 cells localized to ECM-rich interstitial spaces that appeared shared between mesenteric lymph node, mAT, and intestine. Stromal cell expression of epidermal growth factor receptor (EGFR), the receptor for amphiregulin, was required for immunity to infection. Our findings point to the importance of MPC and TH2 cell interactions within the interstitium in orchestrating AT remodeling and immunity to an intestinal infection.


Asunto(s)
Inmunidad Innata , Interleucina-33 , Tejido Adiposo/metabolismo , Anfirregulina , Animales , Citocinas/metabolismo , Dipeptidil Peptidasa 4 , Receptores ErbB , Linfocitos , Ratones , Células Th2 , Factor de Crecimiento Transformador beta1
10.
Nature ; 610(7932): 555-561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171294

RESUMEN

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Serina/metabolismo , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo del Ácido Cítrico , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
11.
Gastroenterology ; 163(4): 965-981.e31, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35738329

RESUMEN

BACKGROUND & AIMS: Exhaustion of CD8 T cells has been suggested to inform different clinical outcomes in Crohn's disease, but detailed analyses are lacking. This study aimed to identify the role of exhaustion on a single-cell level and identify relevant CD8 T cell populations in Crohn's disease. METHODS: Blood and intestinal tissue from 58 patients with Crohn's disease (active disease or remission) were assessed for CD8 T cell expression of exhaustion markers and their cytokine profile by highly multiplexed flow and mass cytometry. Key disease-associated subsets were sorted and analyzed by RNA sequencing. CD39 inhibition assays were performed in vitro. RESULTS: Activated CD39+ and CD39+PD-1+ CD8 T cell subsets expressing multiple exhaustion markers were enriched at low frequency in active Crohn's disease. Their cytokine production capacity was inversely linked to the Harvey-Bradshaw Index. Subset-level protein and transcriptome profiling revealed co-existence of effector and exhaustion programs in CD39+ and CD39+ PD-1+CD8 T cells, with CD39+ cells likely originating from the intestine. CD39 enzymatic activity controlled T cell cytokine production. Importantly, transcriptional exhaustion signatures were enriched in remission in CD39-expressing subsets with up-regulation of TOX. Subset-level transcriptomics revealed a CD39-related gene module that is associated with the clinical course. CONCLUSIONS: These data showed a role for the exhaustion of peripheral CD39-expressing CD8 T cell subsets in Crohn's disease. Their low frequency illustrated the utility of single-cell cytometry methods for identification of relevant immune populations. Importantly, the link of their exhaustion status to the clinical activity and their specific gene signatures have implications for exhaustion-based personalized medicine approaches.


Asunto(s)
Apirasa , Linfocitos T CD8-positivos , Enfermedad de Crohn , Apirasa/sangre , Apirasa/genética , Apirasa/inmunología , Biomarcadores/sangre , Linfocitos T CD8-positivos/inmunología , Enfermedad de Crohn/sangre , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Citocinas/inmunología , Humanos , Pronóstico , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Subgrupos de Linfocitos T
12.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161266

RESUMEN

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Fiebre/inmunología , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Animales , Antineoplásicos/metabolismo , Linfocitos T CD8-positivos/ultraestructura , Citocinas/biosíntesis , Glucosa/metabolismo , Leucemia Mieloide/inmunología , Leucemia Mieloide/patología , Leucemia Mieloide/prevención & control , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/ultraestructura , Modelos Biológicos , Temperatura
13.
BJU Int ; 128(5): 642-651, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34028967

RESUMEN

OBJECTIVES: To determine the activity and safety of lutetium-177 (177 Lu)-prostate-specific membrane antigen (PSMA)-617 in men with metastatic castration-resistant prostate cancer (mCRPC) commencing enzalutamide, who are at high risk of early progression, and to identify potential prognostic and predictive biomarkers from imaging, blood and tissue. PARTICIPANTS AND METHODS: ENZA-p (ANZUP 1901) is an open-label, randomized, two-arm, multicentre, phase 2 trial. Participants are randomly assigned (1:1) to treatment with enzalutamide 160 mg daily alone or enzalutamide plus 177 Lu-PSMA-617 7.5 GBq on Days 15 and 57. Two additional 177 Lu-PSMA-617 doses are allowed, informed by Day-92 Gallium-68 (68 Ga)-PSMA positron emission tomography (PET; up to four doses in total). The primary endpoint is prostate-specific antigen (PSA) progression-free survival (PFS). Other major endpoints include radiological PFS, PSA response rate, overall survival, health-related quality of life, adverse events and cost-effectiveness. Key eligibility criteria include: biochemical and/or clinical progression; 68 Ga-PSMA PET-avid disease; no prior androgen signalling inhibitor, excepting abiraterone; no prior chemotherapy for mCRPC; and ≥2 high-risk features for early enzalutamide failure. Assessments are 4 weekly during study treatment, then 6 weekly until radiographic progression. Response Evaluation Criteria in Solid Tumours (RECIST) are used to assess imaging conducted every 12 weeks, 68 Ga-PSMA PET at baseline, Days 15 and 92, and at progression, and 18 F-fluorine deoxyglucose (18 F-FDG) PET at baseline and progression. Translational samples include blood (and optional biopsies) at baseline, Day 92, and first progression. Correlative studies include identification of prognostic and predictive biomarkers from 68 Ga-PSMA and 18 F-FDG PET/CT, circulating tumour cells and circulating tumour DNA. The trial will enrol 160 participants, providing 80% power with a two-sided type-1 error rate of 5% to detect a hazard ratio of 0.625 assuming a median PSA-PFS of 5 months with enzalutamide alone. RESULTS AND CONCLUSION: The combination of 177 Lu-PSMA-617 and enzalutamide may be synergistic. ENZA-p will determine the safety and efficacy of the combination in addition to developing predictive and prognostic biomarkers to better guide treatment decisions.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Antígenos de Superficie , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Benzamidas/administración & dosificación , Ensayos Clínicos Fase II como Asunto , Análisis Costo-Beneficio , Dipéptidos/administración & dosificación , Dipéptidos/efectos adversos , Dipéptidos/economía , Fluorodesoxiglucosa F18 , Isótopos de Galio , Radioisótopos de Galio , Compuestos Heterocíclicos con 1 Anillo/administración & dosificación , Compuestos Heterocíclicos con 1 Anillo/efectos adversos , Compuestos Heterocíclicos con 1 Anillo/economía , Humanos , Lutecio/administración & dosificación , Masculino , Terapia Molecular Dirigida , Estudios Multicéntricos como Asunto , Nitrilos/administración & dosificación , Feniltiohidantoína/administración & dosificación , Tomografía Computarizada por Tomografía de Emisión de Positrones , Pronóstico , Supervivencia sin Progresión , Antígeno Prostático Específico/administración & dosificación , Antígeno Prostático Específico/efectos adversos , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/economía , Neoplasias de la Próstata Resistentes a la Castración/sangre , Calidad de Vida , Radioisótopos/administración & dosificación , Radiofármacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Criterios de Evaluación de Respuesta en Tumores Sólidos , Tasa de Supervivencia
14.
Cell Death Differ ; 28(7): 2194-2206, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33649469

RESUMEN

Optic atrophy 1 (OPA1), a mitochondria-shaping protein controlling cristae biogenesis and respiration, is required for memory T cell function, but whether it affects intrathymic T cell development is unknown. Here we show that OPA1 is necessary for thymocyte maturation at the double negative (DN)3 stage when rearrangement of the T cell receptor ß (Tcrß) locus occurs. By profiling mitochondrial function at different stages of thymocyte maturation, we find that DN3 cells rely on oxidative phosphorylation. Consistently, Opa1 deletion during early T cell development impairs respiration of DN3 cells and reduces their number. Opa1-deficient DN3 cells indeed display stronger TCR signaling and are more prone to cell death. The surviving Opa1-/- thymocytes that reach the periphery as mature T cells display an effector memory phenotype even in the absence of antigenic stimulation but are unable to generate metabolically fit long-term memory T cells. Thus, mitochondrial defects early during T cell development affect mature T cell function.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Células T de Memoria/metabolismo , Mitocondrias/metabolismo , Animales , Diferenciación Celular , GTP Fosfohidrolasas/genética , Células T de Memoria/citología , Ratones , Ratones Noqueados , Fosforilación Oxidativa , Transducción de Señal , Timo/citología , Timo/metabolismo
15.
BMC Pregnancy Childbirth ; 21(Suppl 1): 234, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33765951

RESUMEN

BACKGROUND: Observation of care at birth is challenging with multiple, rapid and potentially concurrent events occurring for mother, newborn and placenta. Design of electronic data (E-data) collection needs to account for these challenges. The Every Newborn Birth Indicators Research Tracking in Hospitals (EN-BIRTH) was an observational study to assess measurement of indicators for priority maternal and newborn interventions and took place in five hospitals in Bangladesh, Nepal and Tanzania (July 2017-July 2018). E-data tools were required to capture individually-linked, timed observation of care, data extraction from hospital register-records or case-notes, and exit-survey data from women. METHODS: To evaluate this process for EN-BIRTH, we employed a framework organised around five steps for E-data design, data collection and implementation. Using this framework, a mixed methods evaluation synthesised evidence from study documentation, standard operating procedures, stakeholder meetings and design workshops. We undertook focus group discussions with EN-BIRTH researchers to explore experiences from the three different country teams (November-December 2019). Results were organised according to the five a priori steps. RESULTS: In accordance with the five-step framework, we found: 1) Selection of data collection approach and software: user-centred design principles were applied to meet the challenges for observation of rapid, concurrent events around the time of birth with time-stamping. 2) Design of data collection tools and programming: required extensive pilot testing of tools to be user-focused and to include in-built error messages and data quality alerts. 3) Recruitment and training of data collectors: standardised with an interactive training package including pre/post-course assessment. 4) Data collection, quality assurance, and management: real-time quality assessments with a tracking dashboard and double observation/data extraction for a 5% case subset, were incorporated as part of quality assurance. Internet-based synchronisation during data collection posed intermittent challenges. 5) Data management, cleaning and analysis: E-data collection was perceived to improve data quality and reduce time cleaning. CONCLUSIONS: The E-Data system, custom-built for EN-BIRTH, was valued by the site teams, particularly for time-stamped clinical observation of complex multiple simultaneous events at birth, without which the study objectives could not have been met. However before selection of a custom-built E-data tool, the development time, higher training and IT support needs, and connectivity challenges need to be considered against the proposed study or programme's purpose, and currently available E-data tool options.


Asunto(s)
Registros Electrónicos de Salud/organización & administración , Sistemas de Información en Hospital/organización & administración , Hospitales/estadística & datos numéricos , Atención Perinatal/organización & administración , Bangladesh , Exactitud de los Datos , Registros Electrónicos de Salud/estadística & datos numéricos , Femenino , Grupos Focales , Sistemas de Información en Hospital/estadística & datos numéricos , Humanos , Recién Nacido , Nepal , Atención Perinatal/estadística & datos numéricos , Embarazo , Programas Informáticos , Encuestas y Cuestionarios , Tanzanía
16.
Nat Commun ; 11(1): 4107, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796836

RESUMEN

Foamy macrophages, which have prominent lipid droplets (LDs), are found in a variety of disease states. Toll-like receptor agonists drive triacylglycerol (TG)-rich LD development in macrophages. Here we explore the basis and significance of this process. Our findings indicate that LD development is the result of metabolic commitment to TG synthesis on a background of decreased fatty acid oxidation. TG synthesis is essential for optimal inflammatory macrophage activation as its inhibition, which prevents LD development, has marked effects on the production of inflammatory mediators, including IL-1ß, IL-6 and PGE2, and on phagocytic capacity. The failure of inflammatory macrophages to make PGE2 when TG-synthesis is inhibited is critical for this phenotype, as addition of exogenous PGE2 is able to reverse the anti-inflammatory effects of TG synthesis inhibition. These findings place LDs in a position of central importance in inflammatory macrophage activation.


Asunto(s)
Inflamación/metabolismo , Lipidómica/métodos , Triglicéridos/metabolismo , Animales , Células Cultivadas , Citometría de Flujo , Glucosa/metabolismo , Glicerol/metabolismo , Células HEK293 , Humanos , Metabolismo de los Lípidos/fisiología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica , Palmitatos/metabolismo , Análisis de Secuencia de ARN
17.
Br J Cancer ; 123(4): 534-541, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32499569

RESUMEN

BACKGROUND: Host-microbiota interactions shape T-cell differentiation and promote tumour immunity. Although IL-9-producing T cells have been described as potent antitumour effectors, their role in microbiota-mediated tumour control remains unclear. METHODS: We analysed the impact of the intestinal microbiota on the differentiation of colonic lamina propria IL-9-producing T cells in germ-free and dysbiotic mice. Systemic effects of the intestinal microbiota on IL-9-producing T cells and the antitumour role of IL-9 were analysed in a model of melanoma-challenged dysbiotic mice. RESULTS: We show that germ-free mice have lower frequency of colonic lamina propria IL-9-producing T cells when compared with conventional mice, and that intestinal microbiota reconstitution restores cell frequencies. Long-term antibiotic treatment promotes host dysbiosis, diminishes intestinal IL-4 and TGF-ß gene expression, decreases the frequency of colonic lamina propria IL-9-producing T cells, increases the susceptibility to tumour development and reduces the frequency of IL-9-producing T cells in the tumour microenvironment. Faecal transplant restores intestinal microbiota diversity, and the frequency of IL-9-producing T cells in the lungs of dysbiotic animals, restraining tumour burden. Finally, recombinant IL-9 injection enhances tumour control in dysbiotic mice. CONCLUSIONS: Host-microbiota interactions are required for adequate differentiation and antitumour function of IL-9-producing T cells.


Asunto(s)
Antibacterianos/efectos adversos , Disbiosis/inmunología , Vida Libre de Gérmenes , Interleucina-9/metabolismo , Melanoma/microbiología , Linfocitos T/inmunología , Animales , Diferenciación Celular , Línea Celular Tumoral , Disbiosis/inducido químicamente , Disbiosis/terapia , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Interleucina-4/metabolismo , Masculino , Melanoma/inmunología , Ratones , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/inmunología , Trasplante de Neoplasias , Linfocitos T/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
18.
Cell Metab ; 31(2): 391-405.e8, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31761564

RESUMEN

Pyruvate kinase (PK) catalyzes the conversion of phosphoenolpyruvate to pyruvate during glycolysis. The PK isoform PKM2 has additional roles in regulation of gene transcription and protein phosphorylation. PKM2 has been shown to control macrophage metabolic remodeling in inflammation, but its role in T cell biology is poorly understood. Here, we report PKM2 upregulation, phosphorylation, and nuclear accumulation in murine and human CD4+ T cells following activation in vitro. Treatment of T cells with TEPP-46, an allosteric activator that induces PKM2 tetramerization and blocks its nuclear translocation, strongly reduces their activation, proliferation, and cytokine production by inhibiting essential signaling pathways and thus preventing the engagement of glycolysis. TEPP-46 limits the development of both T helper 17 (Th17) and Th1 cells in vitro and ameliorates experimental autoimmune encephalomyelitis (EAE) in vivo. Overall, our results suggest that pharmacological targeting of PKM2 may represent a valuable therapeutic approach in T cell-mediated inflammation and autoimmunity.


Asunto(s)
Proteínas Portadoras/metabolismo , Activadores de Enzimas/farmacología , Proteínas de la Membrana/metabolismo , Piridazinas/farmacología , Pirroles/farmacología , Células TH1 , Hormonas Tiroideas/metabolismo , Animales , Autoinmunidad/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Células TH1/citología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Proteínas de Unión a Hormona Tiroide
19.
Acta Paediatr ; 109(1): 71-77, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31240753

RESUMEN

AIM: Our aim was to investigate the effects of timing of cord clamping on the risk of hyperbilirubinaemia. METHODS: We recruited 540 normal vaginal deliveries at the Paropakar Maternity and Women's Hospital in Kathmandu, Nepal, from October 2 to November 21, 2014. They were randomised into two groups: 257/270 were cord clamped within 60 seconds and 209/270 after 180 seconds. Transcutaneous bilirubin was measured at discharge and 24 hours. At 4 weeks, 506 mothers were successfully contacted by phone, and the health status of the baby and their history of jaundice and treatment was recorded. RESULTS: Based on transcutaneous bilirubin at discharge, 22/261 (8.4%) in the early group and 25/263 (9.5%) in the delayed group (P = 0.76) were at high risk of subsequent hyperbilirubinemia. At the 4-week follow-up, jaundice was reported in 13/253 (5.1%) in the early and 17/253 (6.7%) in the delayed group (P = 0.57) and 3/253 (1.2 %) of the early and 1/253 (0.4%) of the delayed group (P = 0.62) received treatment. All analyses were based on intention-to-treat. CONCLUSION: Delayed cord clamping was not associated with an increased risk of hyperbilirubinaemia during the first day of life or risk of jaundice within 4 weeks compared with the early group.


Asunto(s)
Ictericia Neonatal/epidemiología , Cordón Umbilical , Constricción , Femenino , Humanos , Recién Nacido , Masculino , Nepal/epidemiología , Factores de Tiempo
20.
Artículo en Inglés | MEDLINE | ID: mdl-31485335

RESUMEN

BACKGROUND: Experiments have shown improved cardiovascular stability in lambs if umbilical cord clamping is postponed until positive pressure ventilation is started. Studies on intact cord resuscitation on human term infants are sparse. The purpose of this study was to evaluate differences in clinical outcomes in non-breathing infants between groups, one where resuscitation is initiated with an intact umbilical cord (intervention group) and one group where cord clamping occurred prior to resuscitation (control group). METHODS: Randomized controlled trial, inclusion period April to August 2016 performed at a tertiary hospital in Kathmandu, Nepal. Late preterm and term infants born vaginally, non-breathing and in need of resuscitation according to the 'Helping Babies Breathe' algorithm were randomized to intact cord resuscitation or early cord clamping before resuscitation. Main outcome measures were saturation by pulse oximetry (SpO2), heart rate and Apgar at 1, 5 and 10 minutes after birth. RESULTS: At 10 minutes after birth, SpO2 (SD) was significantly higher in the intact cord group compared to the early cord clamping group, 90.4 (8.1) vs 85.4 (2.7) %, P < .001). In the intact cord group, 57 (44%) had SpO2 < 90% after 10 minutes, compared to 93 (100%) in the early cord clamping group, P < 0.001. SpO2 was also significantly higher in the intervention (intact cord) group at one and five minutes after birth. Heart rate was lower in the intervention (intact cord) group at one and five minutes and slightly higher at ten minutes, all significant findings. Apgar score was significantly higher at one, five and ten minutes. At 5 minutes, 23 (17%) had Apgar score < 7 in the intervention (intact cord) group compared to 26 (27%) in the early cord clamping group, P < .07. Newborn infants in the intervention (intact cord) group started to breathe and establish regular breathing earlier than in the early cord clamping group. CONCLUSIONS: This study provides new and important information on the effects of resuscitation with an intact umbilical cord. The findings of improved SpO2 and higher Apgar score, and the absence of negative consequences encourages further studies with longer follow-up. TRIAL REGISTRATION: Clinicaltrials.gov NCT02727517, 2016/4/4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...