Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 30(12): 6169-6190, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32609332

RESUMEN

Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Desarrollo Fetal/genética , Desarrollo Fetal/fisiología , Animales , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuritas/fisiología , Ovinos
2.
Front Physiol ; 10: 990, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31427988

RESUMEN

Caffeine is one of the few treatments available for infants with apnea of prematurity. As the recommended dosing regimen is not always sufficient to prevent apnea, higher doses may be prescribed. However, little is currently known about the impact of high-dose caffeine on the developing brain; thus, our aim was to investigate the consequences of a high-dose regimen on the immature ovine brain. High-dose caffeine (25 mg/kg caffeine base loading dose; 20 mg/kg daily maintenance dose; n = 9) or saline (n = 8) was administered to pregnant sheep from 105 to 118 days of gestation (DG; term = 147 days); this is broadly equivalent to 28-33 weeks of human gestation. At 119DG, the cerebral cortex, striatum, and cerebellum were assessed histologically and by immunohistochemistry. Compared with controls, caffeine-exposed fetuses showed (i) an increase in the density of Ctip2-positive layers V-VI projection neurons (p = 0.02), Tbr1-positive layers V-VI projection neurons (p < 0.0001), astrocytes (p = 0.03), and oligodendrocytes (p = 0.02) in the cerebral cortex, (ii) a decrease in the density of Cux1-positive layers II-IV projection neurons (p = 0.01) in the cerebral cortex, and (iii) a reduction in the area of Purkinje cell bodies in the cerebellum (p = 0.03). Comparing high-dose caffeine-exposed fetuses with controls, there was no difference (p > 0.05) in: (i) the volume of the cerebral cortex or striatum, (ii) the density of neurons (total and output projection neurons) in the striatum, (iii) dendritic spine density of layer V pyramidal cells, (iv) the density of cortical GABAergic interneurons, microglia, mature oligodendrocytes or proliferating cells, (v) total cerebellar area or dimensions of cerebellar layers, or (vi) the density of cerebellar white matter microglia, astrocytes, oligodendrocytes, or myelin. Daily exposure of the developing brain to high-dose caffeine affects some aspects of neuronal and glial development in the cerebral cortex and cerebellum in the short-term; the long-term structural and functional consequences of these alterations need to be investigated.

3.
Cereb Cortex ; 29(11): 4697-4708, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30721930

RESUMEN

In many species of Mammalia, the surface of the brain develops from a smooth structure to one with many fissures and folds, allowing for vast expansion of the surface area of the cortex. The importance of understanding what drives cortical folding extends beyond mere curiosity, as conditions such as preterm birth, intrauterine growth restriction, and fetal alcohol syndrome are associated with impaired folding in the infant and child. Despite being a key feature of brain development, the mechanisms driving cortical folding remain largely unknown. In this review we discuss the possible role of the subplate, a developmentally transient compartment, in directing region-dependent development leading to sulcal and gyral formation. We discuss the development of the subplate in species with lissencephalic and gyrencephalic cortices, the characteristics of the cells found in the subplate, and the possible presence of molecular cues that guide axons into, and out of, the overlying and multilayered cortex before the appearance of definitive cortical folds. An understanding of what drives cortical folding is likely to help in understanding the origins of abnormal folding patterns in clinical pathologies.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Neuronas/fisiología , Animales , Edad Gestacional , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/anatomía & histología , Vías Nerviosas/crecimiento & desarrollo , Tálamo/anatomía & histología , Tálamo/crecimiento & desarrollo
4.
Hum Reprod ; 33(9): 1715-1726, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032205

RESUMEN

STUDY QUESTION: Is the newly discovered menstruating rodent, the spiny mouse, a valid model for studying endometrial morphology and menstruation? SUMMARY ANSWER: Our study is the first to demonstrate a primate-like pattern of natural menstruation in a rodent, with decidualization, spiral arteriole remodeling and piece-meal endometrial shedding. WHAT IS KNOWN ALREADY: The spiny mouse has a naturally occurring menstrual cycle. This unique feature has the potential to reduce the heavy reliance on primates and provide a more appropriate small animal model for menstrual physiology research. STUDY DESIGN, SIZE, DURATION: This study compares morphological changes in the endometrium during early, mid and late menstruation of the spiny mouse (n = 39), human (n = 9) and the induced mouse model of menstruation (n = 17). PARTICIPANTS/MATERIALS, SETTING, METHODS: We assessed tissue morphology with hematoxylin and eosin and erythrocyte patterns with Mallory's trichrome. We conducted staining for neutrophil gelatinase associated lipocalin (NGAL), cytokeratin and interleukin-11 (IL-11) in all species. We used double immunofluorescence staining for vascular endothelial growth factor and alpha-smooth muscle actin to detect vasculature remodeling and western immunoblot to detect interleukin-8 (IL-8) and macrophage migration inhibitory factor (MIF) in the menstrual fluid of spiny mice. MAIN RESULTS AND THE ROLE OF CHANCE: Menstruation occurs in the spiny mouse over a 72-h period, with heaviest menstrual breakdown occurring 24 h after initial observation of red blood cells in the vaginal cytology. During menstruation, the endometrium of the spiny mouse appeared to resemble human menstrual shedding with focal epithelial breakdown observed in conjunction with lysis of underlying stroma and detection of IL-8 and MIF in menstrual fluid. The mouse exhibits extensive decidualization prior to induced menses, with transformation of the entire uterine horn and cytokeratin expression absent until initiation of repair. Decidualization occurred spontaneously and was less marked in the spiny mouse, where epithelial integrity remained intact. In all species, the decidua was positive for IL-11 secretion and neutrophil recruitment was similar in each. Spiral arteriole formation was confirmed in the spiny mouse. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This is a descriptive study comparing primarily morphological traits between the spiny mouse, the mouse and the human. Reagents specific to the spiny mouse were limited and resources for global use of this novel species are few. WIDER IMPLICATIONS OF THE FINDINGS: Our work supports the spiny mouse as a viable model, sharing many attributes of physiological menstruation with humans. The strength of a natural as opposed to an artificial model is validated through the striking similarities observed between the spiny mouse and human in uterine breakdown. The spiny mouse may be highly useful in large-scale investigations of menstruation and menstrual disorders. STUDY FUNDING/COMPETING INTEREST(S): N.B. and S.R. are each recipients of a Research Training Program scholarship supported by Monash University. This work was supported by the Victorian Government Operational Infrastructure and laboratory funds to H.D. The authors declare no competing interests.


Asunto(s)
Decidua/metabolismo , Menstruación/metabolismo , Murinae , Animales , Western Blotting , Decidua/citología , Femenino , Humanos , Factores Inhibidores de la Migración de Macrófagos/sangre , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Factor A de Crecimiento Endotelial Vascular/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...