Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Microbiol ; 121: 104515, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637077

RESUMEN

Microbial thermal inactivation in low moisture foods is challenging due to enhanced thermal resistance of microbes and low thermal conductivity of food matrices. In this study, we leveraged the body of previous work on this topic to model key experimental features that determine microbial thermal inactivation in low moisture foods. We identified 27 studies which contained 782 mean D-values and developed linear mixed-effect models to assess the effect of microorganism type, matrix structure and composition, water activity, temperature, and inoculation and recovery methods on cell death kinetics. Intraclass correlation statistics (I2) and conditional R2 values of the linear mixed effects models were: E. coli (R2-0.91, I2-83%), fungi (R2-0.88, I2-85%), L. monocytogenes (R2-0.84, I2-75%), Salmonella (R2-0.69, I2-46%). Finally, global response surface models (RSM) were developed to further study the non-linear effect of aw and temperature on inactivation. The fit of these models varied by organisms from R2 0.88 (E. coli) to 0.35 (fungi). Further dividing the Salmonella data into individual RSM models based on matrix structure improved model fit to R2 0.90 (paste-like products) and 0.48 (powder-like products). This indicates a negative relationship between data diversity and model performance.


Asunto(s)
Escherichia coli , Microbiología de Alimentos , Recuento de Colonia Microbiana , Viabilidad Microbiana , Salmonella/fisiología , Agua/análisis , Calor
2.
Int J Food Microbiol ; 378: 109838, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-35863173

RESUMEN

Sanitation in dry food processing environments is challenging due to the exclusion of water. Superheated steam (SHS) is a novel sanitation technique that utilizes high temperature steam to inactivate microorganisms. The high sensible heat of SHS prevents condensation on surfaces. Here we evaluated SHS thermal inactivation of various vegetative and spore forming bacteria and fungi and determined the effect of food matrix composition on SHS efficacy. Capillary tubes with vegetative cells (Salmonella, E. coli O157:H7, Listeria monocytogenes, or Enterococcus faecium), Aspergillus fischeri ascospores, or B. cereus spores (100 µL) were SHS treated at 135 ± 1 °C for 1 or 2 s. After 1 s, SHS achieved a reduction of 10.91 ± 0.63 log10 CFU/mL for vegetative cells, 2.09 ± 0.58 log10 ascospores/mL for A. fischeri, and 0.21 ± 0.10 log10 spores/mL for B. cereus. SHS treatment achieved significant reductions in vegetative cells and fungal ascospores (p < 0.05), however B. cereus spores were not significantly reduced after 2 s and were determined to be the most resistant of the cell types evaluated. Consequently, peanut butter compositions (peanut powder, oil, and water) and milk powder (whole and nonfat) inoculated with B. cereus spores on aluminum foil coupons (2 × 3 × 0.5 cm) were tested. The D161°C values for B. cereus spores ranged from 46.53 ± 4.48 s (6 % fat, 55 % moisture, aw: 0.927) to 79.21 ± 14.87 s (43 % fat, 10 % moisture, aw: 0.771) for various peanut butter compositions. Whole milk powder had higher D161°C (34.38 ± 20.90 s) than nonfat milk powder (24.73 ± 6.78 s). SHS (135 ± 1 °C) rapidly (1 s) inactivated most common vegetative bacterial cells; however B. cereus spores were more heat resistant. B. cereus spore inactivation was significantly affected by product composition (p < 0.05). Compared to the log-linear model (R2 0.81-0.97), the Weibull model had better fit (R2 0.94-0.99). Finally, the ease of peanut butter removal from surfaces increased while the ease of non-fat dry milk removal decreased with the increasing SHS treatment duration. However, allergen residues were detectable on surfaces regardless of SHS treatment. The findings from this study can inform the development of pilot-scale research on SHS.


Asunto(s)
Escherichia coli O157 , Vapor , Alérgenos , Bacillus cereus , Recuento de Colonia Microbiana , Microbiología de Alimentos , Calor , Polvos , Esporas Bacterianas , Agua
3.
Foods ; 10(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34574271

RESUMEN

The effect of moderate-temperature (≤60 °C) dehydration of plant-based foods on pathogen inactivation is unknown. Here, we model the reduction of E. coli O157:H7 as a function of product-matrix, aw, and temperature under isothermal conditions. Apple, kale, and tofu were each adjusted to aw 0.90, 0.95, or 0.99 and inoculated with an E. coli O157:H7 cocktail, followed by isothermal treatment at 49, 54.5, or 60.0 °C. The decimal reduction time, or D-value, is the time required at a given temperature to achieve a 1 log reduction in the target microorganism. Modified Bigelow-type models were developed to determine D-values which varied by product type and aw level, ranging from 3.0-6.7, 19.3-55.3, and 45.9-257.4 min. The relative impact of aw was product dependent and appeared to have a non-linear impact on D-values. The root mean squared errors of the isothermal-based models ranged from 0.75 to 1.54 log CFU/g. Second, we performed dynamic drying experiments. While the isothermal results suggested significant microbial inactivation might be achieved, the dehydrator studies showed that the combination of low product temperature and decreasing aw in the pilot-scale system provided minimal inactivation. Pilot-scale drying at 60 °C only achieved reductions of 3.1 ± 0.8 log in kale and 0.67 ± 0.66 log in apple after 8 h, and 0.69 ± 0.67 log in tofu after 24 h. This illustrates the potential limitations of dehydration at ≤60 °C as a microbial kill step.

4.
Artículo en Inglés | MEDLINE | ID: mdl-34550062

RESUMEN

Six thermo-acidophilic, spore-forming strains were isolated from a variety of juice products and were characterized genetically and phenotypically. According to 16S rRNA and rpoB gene phylogenetic analyses and average nucleotide identity comparisons against the species demarcation cutoff at <95 %, these six strains were determined to represent three novel species of Alicyclobacillus. The isolates were designated FSL-W10-0018T, FSL-W10-0037, FSL-W10-0048, VF-FSL-W10-0049T, FSL-W10-0057 and FSL-W10-0059T. All six isolates were Gram-positive, motile, rod shaped, contained menaquinone 7 as the major respiratory quinone and had ω-cyclohexane C17 : 0 as a major fatty acid. They were all able to grow aerobically in a range of acidic and moderate thermal conditions. Only isolates FSL-W10-0048 and VF-FSL-W10-0049T were able to produce guaiacol. The following names are proposed for the three new species: Alicyclobacillus mali sp. nov. (type strain FSL-W10-0018T =DSM 112016T=NCIMB 15266T); Alicyclobacillus suci sp. nov (VF-FSL-W10-0049T=DSM 112017T=NCIMB 15265T); and Alicyclobacillus fructus sp. nov. (FSL-W10-0059T=DSM 112018T=NCIMB 15264T).


Asunto(s)
Alicyclobacillus , Alicyclobacillus/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Bebidas , ADN Bacteriano/genética , Ácidos Grasos/química , Frutas , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
J Food Prot ; 84(5): 811-819, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290508

RESUMEN

ABSTRACT: Environmental monitoring for Listeria monocytogenes in food processing environments is key for ensuring the safety of ready-to-eat foods. For sampling, swabs are often hydrated with a wetting or transport medium that may contain neutralizers and other ingredients. After swabbing the environment, the swabs may then be transported or shipped cold to an off-site laboratory for testing, ideally within 48 h. Extended shipping times may subject the pathogen to increased temperatures in the presence of the wetting medium, organics, and other chemicals from the processing facility that could confound detection. This study evaluated growth and detection of L. monocytogenes on stainless steel exposed to either buffer or sodium hypochlorite before drying. Swabs were rehydrated with Butterfield's phosphate buffer, neutralizing buffer, Letheen broth, or Dey-Engley neutralizing broth before swabbing. Swabs were stored in the presence of no added food, cheese whey, or ice cream under both optimal (4°C) and suboptimal (15°C) temperatures for up to 72 h. Overall, there was no growth of L. monocytogenes at 4°C through 72 h of storage, although enrichment from these swabs was dependent on the presence and type of food matrix. Pathogen growth during storage at 15°C was more variable and depended on both the food matrix and transport media used, with Dey-Engley and Letheen broths allowing for the highest population increases. Overall, more enrichments resulting in L. monocytogenes detections were observed when using Letheen broth and neutralizing buffer than Dey-Engley broth, which resulted in fewer detections at 15°C. Logistic regression and Cochran-Mantel-Haenszel analyses determined that storage temperature, transport media, and food matrix all significantly affected detection of L. monocytogenes, whereas storage time did not have a clear effect on recovery from swabs.


Asunto(s)
Queso , Listeria monocytogenes , Recuento de Colonia Microbiana , Manipulación de Alimentos , Microbiología de Alimentos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...