Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 97: 104842, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865043

RESUMEN

BACKGROUND: We previously demonstrated the safety and immunogenicity of an MF59-adjuvanted COVID-19 vaccine based on the SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a molecular clamp using HIV-1 glycoprotein 41 sequences. Here, we describe 12-month results in adults aged 18-55 years and ≥56 years. METHODS: Phase 1, double-blind, placebo-controlled trial conducted in Australia (July 2020-December 2021; ClinicalTrials.govNCT04495933; active, not recruiting). Healthy adults (Part 1: 18-55 years; Part 2: ≥56 years) received two doses of placebo, 5 µg, 15 µg, or 45 µg vaccine, or one 45 µg dose of vaccine followed by placebo (Part 1 only), 28 days apart (n = 216; 24 per group). Safety, humoral immunogenicity (including against virus variants), and cellular immunogenicity were assessed to day 394 (12 months after second dose). Effects of subsequent COVID-19 vaccination on humoral responses were examined. FINDINGS: All two-dose vaccine regimens were well tolerated and elicited strong antigen-specific and neutralising humoral responses, and CD4+ T-cell responses, by day 43 in younger and older adults, although cellular responses were lower in older adults. Humoral responses waned by day 209 but were boosted in those receiving authorised vaccines. Neutralising activity against Delta and Omicron variants was present but lower than against the Wuhan strain. Cross-reactivity in HIV diagnostic tests declined over time but remained detectable in most participants. INTERPRETATION: The SARS-CoV-2 molecular clamp vaccine is well tolerated and evokes robust immune responses in adults of all ages. Although the HIV glycoprotein 41-based molecular clamp is not being progressed, the clamp concept represents a viable platform for vaccine development. FUNDING: This study was funded by the Coalition for Epidemic Preparedness Innovations, the National Health and Medical Research Council of Australia, and the Queensland Government.


Asunto(s)
COVID-19 , Infecciones por VIH , Vacunas , Humanos , Anciano , SARS-CoV-2 , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus , Adyuvantes Inmunológicos , Infecciones por VIH/prevención & control , Glicoproteínas , Método Doble Ciego , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
Methods Mol Biol ; 2465: 137-153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35118620

RESUMEN

Recently, we have shown that fate of a vaccine is determined by the cytokine milieu in the innate immune compartment at the early stage of vaccination. Specifically, 24 h post-delivery, level of innate lymphoid cell type 2 (ILC2)-derived IL-13/IL-13Rα2 are the master regulators of DC and also different ILC subsets responsible for modulating the downstream immune outcomes. Here, we provide step-by-step details how to assess different ILC and DC subsets in lung and muscle following intranasal and intramuscular viral vector vaccination, respectively, using multi-color flow cytometry and confocal microscopy.


Asunto(s)
Inmunidad Innata , Vacunas Virales , Células Dendríticas , Linfocitos , Vacunación
3.
Vaccines (Basel) ; 9(5)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062727

RESUMEN

We have shown that manipulation of IL-13 and STAT6 signaling at the vaccination site can lead to different innate lymphoid cell (ILC)/dendritic cell (DC) recruitment, resulting in high avidity/poly-functional T cells and effective antibody differentiation. Here we show that permanent versus transient blockage of IL-13 and STAT6 at the vaccination site can lead to unique ILC-derived IL-13 and IFN-γ profiles, and differential IL-13Rα2, type I and II IL-4 receptor regulation on ILC. Specifically, STAT6-/- BALB/c mice given fowl pox virus (FPV) expressing HIV antigens induced elevated ST2/IL-33R+ ILC2-derived IL-13 and reduced NKp46+/- ILC1/ILC3-derived IFN-γ expression, whilst the opposite (reduced IL-13 and elevated IFN-γ expression) was observed during transient inhibition of STAT6 signaling in wild type BALB/c mice given FPV-HIV-IL-4R antagonist vaccination. Interestingly, disruption/inhibition of STAT6 signaling considerably impacted IL-13Rα2 expression by ST2/IL-33R+ ILC2 and NKp46- ILC1/ILC3, unlike direct IL-13 inhibition. Consistently with our previous findings, this further indicated that inhibition of STAT6 most likely promoted IL-13 regulation via IL-13Rα2. Moreover, the elevated ST2/IL-33R+ IL-13Rα2+ lung ILC2, 24 h post FPV-HIV-IL-4R antagonist vaccination was also suggestive of an autocrine regulation of ILC2-derived IL-13 and IL-13Rα2, under certain conditions. Knowing that IL-13 can modulate IFN-γ expression, the elevated expression of IFN-γR on lung ST2/IL-33R+ ILC2 provoked the notion that there could also be inter-regulation of lung ILC2-derived IL-13 and NKp46- ILC1/ILC3-derived IFN-γ via their respective receptors (IFN-γR and IL-13Rα2) at the lung mucosae early stages of vaccination. Intriguingly, under different IL-13 conditions differential regulation of IL-13/IL-13Rα2 on lung DC was also observed. Collectively these findings further substantiated that IL-13 is the master regulator of, not only DC, but also different ILC subsets at early stages of viral vector vaccination, and responsible for shaping the downstream adaptive immune outcomes. Thus, thoughtful selection of vaccine strategies/adjuvants that can manipulate IL-13Rα2, and STAT6 signaling at the ILC/DC level may prove useful in designing more efficacious vaccines against different/chronic pathogens.

4.
J Clin Transl Res ; 7(1): 116-120, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-34027204

RESUMEN

The ongoing coronavirus disease (COVID-19) pandemic urgently requires the availability of interventions that improve outcomes for those with severe disease. Since severe acute respiratory syndrome coronavirus 2 infection is characterized by dysregulated lung mucosae, and that mucosal homeostasis is heavily influenced by interleukin (IL)-13 activity, we explore recent findings indicating that IL-13 production is proportional to disease severity. We propose that excessive IL-13 contributes to the progression of severe/fatal COVID-19 by (1) promoting the recruitment of immune cells that express inflammatory cytokines, causing a cytokine storm that results in widespread destruction of lung tissue, (2) directly facilitating tissue-remodeling that causes airway hyperinflammation and obstruction, and (3) diverting the immune system away from developing high-quality cytotoxic T cells that confer effective anti-viral immunity. These factors may cumulatively result in significant lung distress, multi-organ failure, and death. Here, we suggest repurposing existing IL-13-inhibiting interventions, including antibody therapies routinely used for allergic lung hyperinflammation, as well as viral vector-based approaches, to alleviate disease. Since many of these strategies have previously been shown to be both safe and effective, this could prove to be a highly cost-effective solution. Relevance for Patients: There remains a desperate need to establish medical interventions that reliably improves outcomes for patients suffering from COVID-19. We explore the role of IL-13 in maintaining homeostasis at the lung mucosae and propose that its dysregulation during viral infection may propagate the hallmarks of severe disease - further exploration may provide a platform for invaluable therapeutics.

5.
Sci Rep ; 11(1): 10495, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006897

RESUMEN

IL-4 production is associated with low-avidity, poorly cytotoxic T cell induction that contributes to viral immune evasion and the failure of T cell-based vaccines. Yet, the precise mechanisms that regulate IL-4 signalling in T cells remain elusive. Mounting evidence indicates that cells can dynamically alter their IL-4/IL-13 receptor signature to modulate downstream immune outcomes upon pathogen encounter. Here, we describe how naïve (CD62L+CD44lo-mid) CD4 and CD8 T cells distinctly engage both STAT6 and STAT3 in response to IL-4. We further show that IL-4R⍺ expression is both time- and IL-4 concentration-dependent. Remarkably, our findings reveal that STAT3 inhibition can ablate IL-4R⍺ and affect transcriptional expression of other Stat and Jak family members. By extension, the loss of STAT3 lead to aberrant STAT6 phosphorylation, revealing an inter-regulatory relationship between the two transcription factors. Moreover, IL-4 stimulation down-regulated TGF-ß1 and IFN-γR1 expression on naïve T cells, possibly signifying the broad regulatory implications of IL-4 in conditioning lineage commitment decisions during early infection. Surprisingly, naïve T cells were unresponsive to IL-13 stimulation, unlike dendritic cells. Collectively, these findings could be exploited to inform more efficacious vaccines, as well as design treatments against IL-4/IL-13-associated disease conditions.


Asunto(s)
Interleucina-4/metabolismo , Factor de Transcripción STAT3/fisiología , Transducción de Señal , Linfocitos T/metabolismo , Animales , Biomarcadores/metabolismo , Femenino , Ratones , Ratones Endogámicos BALB C , Fosforilación , Receptores de Interleucina-4/metabolismo , Factor de Transcripción STAT6/metabolismo
6.
Clin Transl Immunology ; 10(4): e1269, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841880

RESUMEN

OBJECTIVES: Efforts to develop and deploy effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue at pace. Here, we describe rational antigen design through to manufacturability and vaccine efficacy of a prefusion-stabilised spike (S) protein, Sclamp, in combination with the licensed adjuvant MF59 'MF59C.1' (Seqirus, Parkville, Australia). METHODS: A panel recombinant Sclamp proteins were produced in Chinese hamster ovary and screened in vitro to select a lead vaccine candidate. The structure of this antigen was determined by cryo-electron microscopy and assessed in mouse immunogenicity studies, hamster challenge studies and safety and toxicology studies in rat. RESULTS: In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. CONCLUSION: The SARS-CoV-2 Sclamp vaccine candidate is compatible with large-scale commercial manufacture, stable at 2-8°C. When formulated with MF59 adjuvant, it elicits neutralising antibodies and T-cell responses and provides protection in animal challenge models.

7.
Lancet Infect Dis ; 21(10): 1383-1394, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33887208

RESUMEN

BACKGROUND: Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]). METHODS: We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 µg, 15 µg, or 45 µg, or one dose of sclamp vaccine at 45 µg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933. FINDINGS: Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 µg dose (geometric mean titre [GMT] 6400, 95% CI 3683-11 122), with 15 µg dose (7492, 4959-11 319), and the two 45 µg dose cohorts (8770, 5526-13 920 in the two-dose 45 µg cohort; 8793, 5570-13 881 in the single-dose 45 µg cohort); 4 weeks after the second dose (day 57) with two 5 µg doses (102 400, 64 857-161 676), with two 15 µg doses (74 725, 51 300-108 847), with two 45 µg doses (79 586, 55 430-114 268), only a single 45 µg dose (4795, 2858-8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 µg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 µg doses (GMT 228, 95% CI 146-356), two 15 µg doses (230, 170-312), and two 45 µg doses (239, 187-307). INTERPRETATION: This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response. FUNDING: Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Escualeno/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Australia , Femenino , Voluntarios Sanos , Humanos , Masculino , Pandemias/prevención & control , Polisorbatos , Vacunación/efectos adversos , Adulto Joven
8.
Vaccines (Basel) ; 9(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498370

RESUMEN

Subunit vaccines exhibit favorable safety and immunogenicity profiles and can be designed to mimic native antigen structures. However, pairing with an appropriate adjuvant is imperative in order to elicit effective humoral and cellular immune responses. In this study, we aimed to determine an optimal adjuvant pairing with the prefusion form of influenza haemagglutinin (HA) or respiratory syncytial virus (RSV) fusion (F) subunit vaccines in BALB/c mice in order to inform future subunit vaccine adjuvant selection. We tested a panel of adjuvants, including aluminum hydroxide (alhydrogel), QS21, Addavax, Addavax with QS21 (AdQS21), and Army Liposome Formulation 55 with monophosphoryl lipid A and QS21 (ALF55). We found that all adjuvants elicited robust humoral responses in comparison to placebo, with the induction of potent neutralizing antibodies observed in all adjuvanted groups against influenza and in AdQS21, alhydrogel, and ALF55 against RSV. Upon HA vaccination, we observed that none of the adjuvants were able to significantly increase the frequency of CD4+ and CD8+ IFN-γ+ cells when compared to unadjuvanted antigen. The varying responses to antigens with each adjuvant highlights that those adjuvants most suited for pairing purposes can vary depending on the antigen used and/or the desired immune response. We therefore suggest that an adjuvant trial for different subunit vaccines in development would likely be necessary in preclinical studies.

9.
Sci Rep ; 10(1): 1017, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974500

RESUMEN

This study demonstrates that 24 h following viral vector-based vaccination IL-13Rα2 functions as a master sensor on conventional dendritic cells (cDCs), abetted by high protein stability coupled with minimal mRNA expression, to rapidly regulate DC mediated IL-13 responses at the lung mucosae, unlike IL-13Rα1. Under low IL-13, IL-13Rα2 performs as a primary signalling receptor, whilst under high IL-13, acts to sequester IL-13 to maintain homeostasis, both in a STAT3-dependent manner. Likewise, we show that viral vector-derived IL-13 levels at the vaccination site can induce differential STAT3/STAT6 paradigms in lung cDC, that can get regulated collaboratively or independently by TGF-ß1 and IFN-γ. Specifically, low IL-13 responses associated with recombinant Fowlpox virus (rFPV) is regulated by early IL-13Rα2, correlated with STAT3/TGF-ß1 expression. Whilst, high IL-13 responses, associated with recombinant Modified Vaccinia Ankara (rMVA) is regulated in an IL-13Rα1/STAT6 dependent manner associated with IFN-γR expression bias. Different viral vaccine vectors have previously been shown to induce unique adaptive immune outcomes. Taken together current observations suggest that IL-13Rα2-driven STAT3/STAT6 equilibrium at the cDC level may play an important role in governing the efficacy of vector-based vaccines. These new insights have high potential to be exploited to improve recombinant viral vector-based vaccine design, according to the pathogen of interest and/or therapies against IL-13 associated disease conditions.


Asunto(s)
Células Dendríticas/inmunología , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Interleucina-13/inmunología , Factor de Transcripción STAT3/metabolismo , Vacunas Virales/inmunología , Animales , Femenino , Virus de la Viruela de las Aves de Corral/inmunología , Interferón gamma/inmunología , Subunidad alfa1 del Receptor de Interleucina-13/metabolismo , Pulmón/citología , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Factor de Transcripción STAT6/metabolismo , Factor de Crecimiento Transformador beta1/inmunología , Vacunación , Vacunas Sintéticas/inmunología , Virus Vaccinia/inmunología
10.
Sci Rep ; 9(1): 5661, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952887

RESUMEN

A HIV vaccine that provides mucosal immunity is urgently needed. We evaluated an intranasal recombinant Fowlpox virus (rFPV) priming vaccine followed by intramuscular Modified Vaccinia Ankara (rMVA) booster vaccine, both expressing SIV antigens. The vaccination generated mucosal and systemic SIV-specific CD4+ T cell mediated immunity and was associated with partial protection against high-dose intrarectal SIVmac251 challenge in outbred pigtail macaques. Three of 12 vaccinees were completely protected and these animals elicited sustained Gag-specific poly-functional, cytotoxic mucosal CD4+ T cells, complemented by systemic poly-functional CD4+ and CD8+ T cell immunity. Humoral immune responses, albeit absent in completely protected macaques, were associated with partial control of viremia in animals with relatively weaker mucosal/systemic T cell responses. Co-expression of an IL-4R antagonist by the rFPV vaccine further enhanced the breadth and cytotoxicity/poly-functionality of mucosal vaccine-specific CD4+ T cells. Moreover, a single FPV-gag/pol/env prime was able to induce rapid anamnestic gp140 antibody response upon SIV encounter. Collectively, our data indicated that nasal vaccination was effective at inducing robust cervico-vaginal and rectal immunity, although cytotoxic CD4+ T cell mediated mucosal and systemic immunity correlated strongly with 'complete protection', the different degrees of protection observed was multi-factorial.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Virus de la Viruela de las Aves de Corral/inmunología , Macaca nemestrina/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas Sintéticas/inmunología , Vacunas contra el SIDA/inmunología , Administración Intranasal/métodos , Animales , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunidad Mucosa/inmunología , Inmunización Secundaria/métodos , Memoria Inmunológica/inmunología , Inyecciones Intramusculares/métodos , Macaca nemestrina/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Vacunación/métodos , Vaccinia/inmunología , Virus Vaccinia/inmunología
11.
Artículo en Inglés | MEDLINE | ID: mdl-31001491

RESUMEN

Human immunodeficiency virus (HIV)-1 and hepatitis C virus (HCV) are major contributors to the global disease burden with many experts recognizing the requirement of an effective vaccine to bring a durable end to these viral epidemics. The most promising vaccine candidates that have advanced into pre-clinical models and the clinic to eliminate or provide protection against these chronic viruses are viral vectors [e.g., recombinant cytomegalovirus, Adenovirus, and modified vaccinia Ankara (MVA)]. This raises the question, is there a need to develop DNA vaccines against HIV-1 and HCV? Since the initial study from Wolff and colleagues which showed that DNA represents a vector that can be used to express transgenes durably in vivo, DNA has been regularly evaluated as a vaccine vector albeit with limited success in large animal models and humans. However, several recent studies in Phase I-IIb trials showed that vaccination of patients with recombinant DNA represents a feasible therapeutic intervention to even cure cervical cancer, highlighting the potential of using DNA for human vaccinations. In this review, we will discuss the limitations and the strategies of using DNA as a vector to develop prophylactic T cell-mediated vaccines against HIV-1 and HCV. In particular, we focus on potential strategies exploiting DNA vectors to elicit protective localized CD8+ T cell immunity in the liver for HCV and in the cervicovaginal mucosa for HIV-1 as localized immunity will be an important, if not critical component, of an efficacious vaccine against these viral infections.


Asunto(s)
Descubrimiento de Drogas/tendencias , Infecciones por VIH/prevención & control , Hepatitis C/prevención & control , Linfocitos T/inmunología , Vacunas de ADN/inmunología , Vacunología/tendencias , Vacunas Virales/inmunología , Humanos , Vacunas de ADN/aislamiento & purificación , Vacunas Virales/aislamiento & purificación
12.
Virology ; 529: 1-6, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30622027

RESUMEN

Vaccinia virus (VACV), like many other viruses, binds to cell surface heparan sulfate (HS) prior to infecting cells. Since HS is ubiquitously expressed extracellularly, it seemed likely that VACV-HS interaction may impede virus spread, with host heparanase, the only known mammalian endoglycosidase that can degrade HS, potentially overcoming this problem. In support of this hypothesis, we found that, compared to wild type, mice deficient in heparanase showed a 1-3 days delay in the spread of VACV to distant organs, such as ovaries, following intranasal inoculation, or to ovaries and spleen following intramuscular inoculation. These delays in spread occurred despite heparanase deficiency having no effect on VACV replication at inoculation sites. Subsequent in vitro studies revealed that heparanase treatment released VACV from HS expressing, but not HS deficient, infected cell monolayers. Collectively these data suggest that VACV relies on host heparanase to degrade HS in order to spread to distant sites.


Asunto(s)
Glucuronidasa/metabolismo , Heparitina Sulfato/metabolismo , Virus Vaccinia/metabolismo , Animales , Glucuronidasa/genética , Heparitina Sulfato/genética , Humanos , Ratones , Ratones Noqueados , Replicación Viral
13.
NPJ Vaccines ; 3: 10, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29560282

RESUMEN

This study demonstrates that the fate of a vaccine is influenced by the cytokines produced by the innate lymphoid cells (ILC) recruited to the vaccination site, and it is vaccine route and adjuvant dependent. Intranasal virus vaccination induced ST2/IL-33R+ ILC2 in lung, while intramuscular vaccination induced exclusively IL-25R+ ILC2 in muscle. Interestingly, a larger proportion of IL-13+ ILC2s were detected in muscle following i.m. viral vector vaccination compared to lung post i.n. delivery. These observations revealed that ILC2 were the main source of IL-13 at the vaccination site (24 h post vaccination) responsible for inducing T cells of varying avidities. Moreover, recombinant fowlpox viral vector-based vaccines expressing adjuvants that transiently block IL-13 signalling at the vaccination site using different mechanisms (IL-4R antagonist or IL-13Rα2 adjuvants), revealed that the level of IL-13 present in the milieu also significantly influenced IFN-γ, IL-22 or IL-17A expression by ILC1/ILC3. Specifically, an early IL-13 and IFN-γ co-dependency at the ILC level may also be associated with shaping the downstream antibody responses, supporting the notion that differentially regulating IL-13 signalling via STAT6 or IL-13Rα2 pathways can modify ILC function and the resulting adaptive T- and B-cell immune outcomes reported previously. Moreover, unlike chronic inflammatory or experimentally induced conditions, viral vector vaccination induced uniquely different ILC profiles (i.e., expression of CD127 only on ILC2 not ILC1/ILC3; expression of IFN-γ in both NKP46+ and NKp46- ILCs). Collectively, our data highlight that tailoring a vaccine vector/adjuvant to modulate the ILC cytokine profile according to the target pathogen, may help design more efficacious vaccines in the future.

14.
Eur J Immunol ; 48(7): 1153-1163, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29569714

RESUMEN

In this study, recombinant pox viral vaccination was shown to induce highly elevated IgG2a and low IgG1 antibody expression in mice lacking IL-4 or STAT6, whilst IL-13-/- mice exhibited elevated IgG1, but very low IgG2a. These findings revealed that IL-13 and IL-4 differentially regulated antibody development. To understand this further, when STAT6-/- mice were given a vaccine co-expressing IL-13Rα2 that temporarily sequestered IL-13, significantly reduced IgG2a expression, was detected. These findings for the first time demonstrated that IL-13 regulated IgG2a differentiation utilising an alternative IL-13R signalling pathway independent of STAT6 (IL-13Rα2 pathway). This was further corroborated by the (i) elevated IL-13Rα2 expression detected on STAT6-/- lung MHCII+ CD11c+ cells 24 h post IL-13 inhibitor vaccination and ii) significant up-regulation of IL-13Rα2 expression on spleen and lung derived MHCII+ CD11c+ following inhibition of STAT6 signalling in vitro, or vaccination with IL-4R/STAT6 antagonist in vivo. When T follicular helper (Tfh) cells which regulate antibody differentiation were assessed post vaccination, although no difference in IL-4 expression was observed, greatly reduced IFN-γ expression was detected in IL-13-/- and STAT6-/- mice compared to wild-type. These findings support the notion that the balance of IL-13 level at the vaccination site can differentially regulate T and B-cell immune outcomes.


Asunto(s)
Avipoxvirus/fisiología , Subunidad alfa2 del Receptor de Interleucina-13/inmunología , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Infecciones por Poxviridae/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/metabolismo , Células Cultivadas , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G/metabolismo , Isotipos de Inmunoglobulinas/metabolismo , Interleucina-13/genética , Subunidad alfa2 del Receptor de Interleucina-13/genética , Interleucina-4/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Transducción de Señal , Vacunas Virales/genética
15.
J Virol ; 92(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29437963

RESUMEN

A universal hepatitis C virus (HCV) vaccine should elicit multiantigenic, multigenotypic responses, which are more likely to protect against challenge with the range of genotypes and subtypes circulating in the community. A vaccine cocktail and vaccines encoding consensus HCV sequences are attractive approaches to achieve this goal. Consequently, in a series of mouse vaccination studies, we compared the immunogenicity of a DNA vaccine encoding a consensus HCV nonstructural 5B (NS5B) protein to that of a cocktail of DNA plasmids encoding the genotype 1b (Gt1b) and Gt3a NS5B proteins. To complement this study, we assessed responses to a multiantigenic cocktail regimen by comparing a DNA vaccine cocktail encoding Gt1b and Gt3a NS3, NS4, and NS5B proteins to a single-genotype NS3/4/5B DNA vaccine. To thoroughly evaluate in vivo cytotoxic T lymphocyte (CTL) and T helper (Th) cell responses against Gt1b and Gt3a HCV peptide-pulsed target cells, we exploited a novel fluorescent-target array (FTA). FTA and enzyme-linked immunosorbent spot (ELISpot) analyses collectively indicated that the cocktail regimens elicited higher responses to Gt1b and Gt3a NS5B proteins than those with the consensus vaccine, while the multiantigenic DNA cocktail significantly increased the responses to NS3 and NS5B compared to those elicited by the single-genotype vaccines. Thus, a DNA cocktail vaccination regimen is more effective than a consensus vaccine or a monovalent vaccine at increasing the breadth of multigenotypic T cell responses, which has implications for the development of vaccines for communities where multiple HCV genotypes circulate.IMPORTANCE Despite the development of highly effective direct-acting antivirals (DAA), infections with hepatitis C virus (HCV) continue, particularly in countries where the supply of DAA is limited. Furthermore, patients who eliminate the virus as a result of DAA therapy can still be reinfected. Thus, a vaccine for HCV is urgently required, but the heterogeneity of HCV strains makes the development of a universal vaccine difficult. To address this, we developed a novel cytolytic DNA vaccine which elicits robust cell-mediated immunity (CMI) to the nonstructural (NS) proteins in vaccinated animals. We compared the immune responses against genotypes 1 and 3 that were elicited by a consensus DNA vaccine or a DNA vaccine cocktail and showed that the cocktail induced higher levels of CMI to the NS proteins of both genotypes. This study suggests that a universal HCV vaccine can most readily be achieved by use of a DNA vaccine cocktail.


Asunto(s)
Genotipo , Hepacivirus/inmunología , Hepatitis C/inmunología , Inmunidad Celular , Linfocitos T/inmunología , Vacunas de ADN/inmunología , Vacunas contra Hepatitis Viral/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Reacciones Cruzadas/inmunología , Femenino , Células HEK293 , Hepatitis C/prevención & control , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas no Estructurales Virales/genética
16.
Front Microbiol ; 8: 2091, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118747

RESUMEN

Human immunodeficiency virus (HIV)-1 has infected >75 million individuals globally, and, according to the UN, is responsible for ~2.1 million new infections and 1.1 million deaths each year. Currently, there are ~37 million individuals with HIV infection and the epidemic has already resulted in 35 million deaths. Despite the advances of anti-retroviral therapy (ART), a cost-effective vaccine remains the best long-term solution to end the HIV-1 epidemic especially given that the vast majority of infected individuals live in poor socio-economic regions of the world such as Sub-Saharan Africa which limits their accessibility to ART. The modest efficacy of the RV144 Thai trial provides hope that a vaccine for HIV-1 is possible, but as markers for sterilizing immunity are unknown, the design of an effective vaccine is empirical, although broadly cross-reactive neutralizing antibodies (bNAb) that can neutralize various quasispecies of HIV-1 are considered crucial. Since HIV-1 transmission often occurs at the genito-rectal mucosa and is cell-associated, there is a need to develop vaccines that can elicit CD8+ T cell immunity with the capacity to kill virus infected cells at the genito-rectal mucosa and the gut. Here we discuss the recent progress made in developing T cell-mediated vaccines for HIV-1 and emphasize the need to elicit mucosal tissue-resident memory CD8+ T (CD8+ Trm) cells. CD8+ Trm cells will likely form a robust front-line defense against HIV-1 and eliminate transmitter/founder virus-infected cells which are responsible for propagating HIV-1 infections following transmission in vast majority of cases.

17.
J Gen Virol ; 98(10): 2556-2568, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28933686

RESUMEN

To establish the importance of virus-heparan sulfate (HS) interactions in virus infectivity, the poxvirus vaccinia virus (VACV) was used, as it binds HS and has both enveloped virus (EV) and non-enveloped mature virus (MV) forms. Initial studies showed that heparin inhibited plaque formation by both MV-rich WR and EV-rich IHD-J strains of VACV, with the EV-rich strain also losing trademark 'comet'-shaped plaques. However, using GFP-tagged EV and MV forms of VACV, based on IC50 values, heparin was 16-fold more effective at inhibiting the infectivity of the EV form compared to the MV form. Furthermore, 6-O and N-sulfation of the glucosamine residues of heparin was essential for inhibition of the infectivity of both VACV forms. Several low-molecular-weight HS mimetics were also shown to have substantial antiviral activity, with glycosidic linkages, chain length and monosaccharide backbone being important contributors towards anti-VACV activity. In fact, the d-mannose-based sulfated oligosaccharide mixture, PI-88 (Muparfostat), was four-fold more active than heparin at inhibiting MV infections. Paradoxically, despite heparin and HS mimetics being potent inhibitors of VACV infections, removal of HS from cell surfaces by enzymatic or genetic means resulted in only a modest reduction in infectivity. It is unlikely that this paradox can be explained by steric hindrance, due to the low molecular weight of the HS mimetics (~1-2.5 kDa), with a more likely explanation being that binding of heparin/HS mimetics to free VACV initiates an abortive viral infection. Based on this explanation, HS mimetics have considerable potential as antivirals against HS-binding viruses.

18.
J Gen Virol ; 98(3): 496-505, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28056224

RESUMEN

We have previously established that mucosal uptake of recombinant fowlpox virus (rFPV) vaccines is far superior to other vector-based vaccines. Specifically, intranasal priming with rFPV vaccines can recruit unique antigen-presenting cells, which induce excellent mucosal and systemic HIV-specific CD8+ T-cell immunity. In this study, we have for the first time investigated the in vivo dissemination, safety and expression kinetics of rFPV post intranasal delivery using recombinant viruses expressing green fluorescent protein or mCherry. Both confocal microscopy of tissue sections using green fluorescent protein and in vivo Imaging System (IVIS) spectrum live animal and whole organ imaging studies using mCherry revealed that (i) the peak antigen expression occurs 12 to 24 h post vaccination and no active viral gene expression is detected 96 h post vaccination. (ii) The virus only infects the initial vaccination site (lung and nasal cavity) and does not disseminate to distal sites such as the spleen or gut. (iii) More importantly, rFPV does not cross the olfactory receptor neuron pathway. Collectively, our findings indicate that rFPV vector-based vaccines have all the hallmarks of a safe and effective mucosal delivery vector, suitable for clinical evaluation.


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Virus de la Viruela de las Aves de Corral , Antígenos VIH/administración & dosificación , Antígenos VIH/efectos adversos , Vacunas Sintéticas/efectos adversos , Vacunas contra el SIDA/metabolismo , Administración Intranasal , Animales , Tracto Gastrointestinal/metabolismo , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Antígenos VIH/metabolismo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Imagen Molecular , Mucosa Nasal/metabolismo , Bazo/metabolismo , Vacunación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/metabolismo , Proteína Fluorescente Roja
19.
Vaccine ; 33(51): 7315-7327, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26519547

RESUMEN

Thirty genes composed of cytokines, chemokines, granzymes, perforin and integrins were evaluated in gut and splenic K(d)Gag197-205-specific single CD8(+) T cells using Fluidigm 48.48 Dynamic arrays, with the aim of identifying biomarkers to predict effective mucosal and systemic vaccine efficacy. The mRNA expression profiles were analyzed in three ways: (i) the "number" of K(d)Gag197-205-specific CD8(+) T cells expressing the biomarker, (ii) "level" of mRNA expression using principal component analysis (PCA) and (iii) poly-functionality in relation to RANTES expression. In total, 21 genes were found to be differentially expressed between the vaccine groups and the immune compartments tested. Overall, the PCA indicated that IL-13Rα2 or IL-4R antagonist adjuvanted vaccines that previously induced high-avidity mucosal/systemic CD8(+) T cells with better protective efficacy, the "level" of mRNA expression, specifically RANTES, MIP-1ß, and integrin α4 in gut K(d)Gag197-205-specific single CD8(+) T cells, were significantly elevated compared to unadjuvanted vaccine. Furthermore, significantly elevated granzymes/perforin levels were detected in IL-13(-/-) mice given the unadjuvanted vaccine, indicating that the degree of IL-13 inhibition (total, transient or no inhibition) can considerably alter the level of T-cell activity/poly-functionality. When splenic- and gut-K(d)Gag197-205-specific CD8(+) T cells were compared, PC1 vs. PC2 scores revealed that not only RANTES, MIP-1ß, and integrin α4 mRNA, but also perforin, granzymes A/B, and integrins ß1 and ß2 mRNA were elevated in spleen. Collectively, data suggest that RANTES, MIP-1ß, perforin, and integrins α4, ß1 and ß7 mRNA in single HIV-specific CD8(+) T cells could be used as a measure of effective mucosal and systemic vaccine efficacy.


Asunto(s)
Vacunas contra el SIDA/inmunología , Biomarcadores/análisis , Linfocitos T CD8-positivos/inmunología , Productos del Gen gag/inmunología , Vacunas contra el SIDA/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Femenino , Perfilación de la Expresión Génica , Ratones Endogámicos BALB C , Análisis por Micromatrices , Bazo/inmunología
20.
PLoS One ; 10(5): e0126487, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946028

RESUMEN

Thirty different genes including cytokines, chemokines, granzymes, perforin and specifically integrins were evaluated in Peyer's patch-KdGag197-205-specific CD8+ T cells (pools of 100 cells) using Fluidigm 48.48 Dynamic arrays following three different prime-boost immunization strategies. Data revealed that the route of prime or the booster immunization differentially influenced the integrin expression profile on gut KdGag197-205-specific CD8+ T cells. Specifically, elevated numbers of integrin αE and αD expressing gut KdGag197-205-specific CD8+ T cells were detected following mucosal but not systemic priming. Also, αE/ß7 and αD/ß2 heterodimerization were more noticeable in an intranasal (i.n.)/i.n. vaccination setting compared to i.n./intramuscular (i.m) or i.m./i.m. vaccinations. Moreover, in all vaccine groups tested α4 appeared to heterodimerize more closely with ß7 then ß1. Also MIP-1ß, RANTES, CCR5, perforin and integrin α4 bio-markers were significantly elevated in i.n./i.m. and i.m./i.m. immunization groups compared to purely mucosal i.n./i.n. delivery. Furthermore, when wild type (WT) BALB/c and IL-13 knockout (KO) mice were immunized using i.n./i.m. strategy, MIP-1α, MIP-1ß, RANTES, integrins α4, ß1 and ß7 mRNA expression levels were found to be significantly different, in mucosal verses systemic KdGag197-205-specific CD8+ T cells. Interestingly, the numbers of gut KdGag197-205-specific CD8+ T cells expressing gut-homing markers α4ß7 and CCR9 protein were also significantly elevated in IL-13 KO compared to WT control. Collectively, our findings further corroborate that the route of vaccine delivery, tissue microenvironment and IL-13 depleted cytokine milieu can significantly alter the antigen-specific CD8+ T cell gene expression profiles and in turn modulate their functional avidities as well as homing capabilities.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citocinas/genética , VIH-1/inmunología , Inmunización/métodos , Interleucina-13/genética , Animales , Citocinas/inmunología , Vías de Administración de Medicamentos , Femenino , Granzimas/genética , Infecciones por VIH/inmunología , Inmunidad Mucosa/genética , Inmunidad Mucosa/inmunología , Integrinas/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Perforina/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA