Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Foods ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611363

RESUMEN

The increasing popularity of home brewing and the fast evolution of craft beer companies have fuelled the interest in novel yeasts as the main actors diversifying the beer portfolio. Here, we have characterized the thermal tolerance and brewing-related features of two sourdough (SD) isolates of Saccharomyces cerevisiae, SDy01 and SDy02, at different temperatures, 20 and 37 °C, comparing them with commercial brew strains, AaB and kNB. The SD strains exhibited tolerance to the main brewing-related stress conditions and increased growth rates and lower lag phases than the reference beer strains at both temperatures. Consistent with this, SDy01 and SDy02 displayed higher fermentative activity in terms of sugar rate depletion and the release of metabolic by-products. Moreover, SDy01 and SDy02 brewing at 20 °C increased their total amount of volatile compounds (VOCs), in particular, their esters and carboxyl compounds, as compared to the reference AaB strain. In contrast, fermentation at 37 °C resulted in a drastic reduction in the number of VOCs in wort fermented with SD yeast, especially in its level of esters. In conclusion, our results stress the high fermentative performance of SD strains in beer wort and their ability to provide a complex and specific aromatic profile at a wide range of temperatures.

2.
Food Microbiol ; 120: 104474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431320

RESUMEN

This work describes the characterization of an artisanal sourdough set of bakeries located in the city of Valencia. Culture-dependent and -independent analyses detected Fructilactobacillus sanfranciscensis, Saccharomyces cerevisiae and Kazachstania humilis as dominant species. Nevertheless, specific technological parameters, including backslopping temperature, dough yield, or the addition of salt affected microbial counting, LAB/Yeast ratio, and gassing performance, favouring the appearance of several species of Lactobacillus sp., Limosilactobacillus pontis or Torulaspora delbrueckii as additional players. Sourdough leavening activity was affected positively by yeast counts and negatively by the presence of salt. In addition, the predominance of a particular yeast species appeared to impact the dynamics of CO2 release. Seven important flavour-active compounds (ethyl acetate, 1-hexanol, 2-penthylfuran, 3-ethyl-2-methyl-1,3-hexadiene, 2-octen-1-ol, nonanal and 1-nonanol) were detected in all samples and together with 3-methyl butanol and hexyl acetate represented more than the 53% of volatile abundancy in nine of the ten sourdoughs analysed. Even so, the specific microbial composition of each sample influenced the volatile profile. For example, the occurrence of K. humilis or S. cerevisiae as dominant yeast influenced the composition of major alcohol species, while F. sanfranciscensis and L. pontis positively correlated with aldehydes and octanoic acid content. In addition, relevant correlations could be also found among different technological parameters and between these, volatile compounds and microbial species. Overall, our study emphasises on how differences in technological parameters generate biodiversity in a relatively small set of artisan sourdoughs providing opportunities for excellence and quality baking products.


Asunto(s)
Bioprospección , Saccharomyces cerevisiae , Fermentación , Pan/análisis , Biodiversidad , Harina/análisis , Microbiología de Alimentos
3.
Microbiol Res ; 277: 127487, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37713908

RESUMEN

Acetic acid tolerance of Saccharomyces cerevisiae is an important trait in sourdough fermentation processes, where the accumulation of acid by the growth of lactic acid bacteria reduces the yeast metabolic activity. In this work, we have carried out adaptive laboratory evolution (ALE) experiments in two sourdough isolates of S. cerevisiae exposed to acetic acid, or alternatively to acetic acid and myriocin, an inhibitor of sphingolipid biosynthesis that sped-up the evolutionary adaptation. Evolution approaches resulted in acetic tolerance, and surprisingly, increased lactic susceptibility. Four evolved clones, one from each parental strain and evolutionary scheme, were selected on the basis of their potential for CO2 production in sourdough conditions. Among them, two showed phenotypic instability characterized by strong lactic sensitivity after several rounds of growth under unstressed conditions, while two others, displayed increased constitutive acetic tolerance with no loss of growth in lactic medium. Genome sequencing and ploidy level analysis of all strains revealed aneuploidies, which could account for phenotypic heterogeneity. In addition, copy number variations (CNVs), affecting specially to genes involved in ion transport or flocculation, and single nucleotide polymorphisms (SNPs) were identified. Mutations in several genes, ARG82, KEX1, CTK1, SPT20, IRA2, ASG1 or GIS4, were confirmed as involved in acetic and/or lactic tolerance, and new determinants of these phenotypes, MSN5 and PSP2, identified.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacología , Variaciones en el Número de Copia de ADN , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación , Fenotipo , Carioferinas/genética , Carioferinas/metabolismo
4.
J Fungi (Basel) ; 8(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35205847

RESUMEN

Slt2, the MAPK of the cell wall integrity (CWI) pathway, connects different signaling pathways and performs different functions in the protective response of S. cerevisiae to stress. Previous work has evidenced the relation of the CWI pathway and the unfolded protein response (UPR), a transcriptional program activated upon endoplasmic reticulum (ER) stress. However, the mechanisms of crosstalk between these pathways and the targets regulated by Slt2 under ER stress remain unclear. Here, we demonstrated that ectopic expression of GFA1, the gene encoding the first enzyme in the synthesis of UDP-GlcNAc by the hexosamine biosynthetic pathway (HBP) or supplementation of the growth medium with glucosamine (GlcN), increases the tolerance of slt2 mutant cells to different ER-stress inducers. Remarkably, GlcN also alleviates the sensitivity phenotype of cells lacking IRE1 or HAC1, the main actors in controlling the UPR. The exogenous addition of GlcN reduced the abundance of glycosylated proteins and triggered autophagy. We also found that TORC1, the central stress and growth controller, is inhibited by tunicamycin exposure in cells of the wild-type strain but not in those lacking Slt2. Consistent with this, the tunicamycin-induced activation of autophagy and the increased synthesis of ATP in response to ER stress were absent by knock-out of SLT2. Altogether, our data placed Slt2 as an essential actor of the ER stress response by regulating the HBP activity and the TORC1-dependent signaling.

5.
Front Cell Dev Biol ; 8: 592159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282871

RESUMEN

Hyperphosphorylation of protein tau is a hallmark of Alzheimer's disease (AD). Changes in energy and lipid metabolism have been correlated with the late onset of this neurological disorder. However, it is uncertain if metabolic dysregulation is a consequence of AD or one of the initiating factors of AD pathophysiology. Also, it is unclear whether variations in lipid metabolism regulate the phosphorylation state of tau. Here, we show that in humanized yeast, tau hyperphosphorylation is stimulated by glucose starvation in coincidence with the downregulation of Pho85, the yeast ortholog of CDK5. Changes in inositol phosphate (IP) signaling, which has a central role in energy metabolism, altered tau phosphorylation. Lack of inositol hexakisphosphate kinases Kcs1 and Vip1 (IP6 and IP7 kinases in mammals) increased tau hyperphosphorylation. Similar effects were found by mutation of IPK2 (inositol polyphosphate multikinase), or PLC1, the yeast phospholipase C gene. These effects may be explained by IP-mediated regulation of Pho85. Indeed, this appeared to be the case for plc1, ipk2, and kcs1. However, the effects of Vip1 on tau phosphorylation were independent of the presence of Pho85, suggesting additional mechanisms. Interestingly, kcs1 and vip1 strains, like pho85, displayed dysregulated sphingolipid (SL) metabolism. Moreover, genetic and pharmacological inhibition of SL biosynthesis stimulated the appearance of hyperphosphorylated forms of tau, while increased flux through the pathway reduced its abundance. Finally, we demonstrated that Sit4, the yeast ortholog of human PP2A protein phosphatase, is a downstream effector of SL signaling in mediating the tau phosphorylation state. Altogether, our results add new knowledge on the molecular effectors involved in tauopathies and identify new targets for pharmacological intervention.

6.
Microb Biotechnol ; 13(4): 1066-1081, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32212314

RESUMEN

The modification of lipid composition allows cells to adjust membrane biophysical properties in response to changes in environmental temperature. Here, we use adaptive laboratory evolution (ALE) in the presence of myriocin, a sphingolipid (SLs) biosynthesis inhibitor, to remodel the lipid profile of an industrial yeast strain (LH) of Saccharomyces cerevisiae. The approach enabled to obtain a heterogeneous population (LHev) of myriocin-tolerant evolved clones characterized by its growth capacity at high temperature. Myriocin exposure also caused tolerance to soraphen A, an inhibitor of the acetyl-CoA carboxylase Acc1, the rate-limiting enzyme in fatty acid de novo production, supporting a change in lipid metabolism during ALE. In line with this, characterization of two randomly selected clones, LH03 and LH09, showed the presence of lipids with increased saturation degree and reduced acyl length. In addition, the clone LH03, which displays the greater improvement in fitness at 40°C, exhibited higher SL content as compared with the parental strain. Analysis of the LH03 and LH09 genomes revealed a loss of chromosomes affecting genes that have a role in fatty acid synthesis and elongation. The link between ploidy level and growth at high temperature was further supported by the analysis of a fully isogenic set of yeast strains with ploidy between 1N and 4N which showed that the loss of genome content provides heat tolerance. Consistent with this, a thermotolerant evolved population (LH40°) generated from the parental LH strain by heat-driven ALE exhibited a reduction in the chromosome copy number. Thus, our results identify myriocin-driven evolution as a powerful approach to investigate the mechanisms of acquired thermotolerance and to generate improved strains.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Termotolerancia , Ácidos Grasos Monoinsaturados , Laboratorios , Saccharomyces cerevisiae/genética
7.
FEMS Yeast Res ; 20(1)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31981362

RESUMEN

Torulaspora delbrueckii is a yeast species receiving increasing attention from the biotechnology industry, with particular relevance in the wine, beer and baking sectors. However, little is known about its sugar transporters and sugar transport capacity, frequently a rate-limiting step of sugar metabolism and efficient fermentation. Actually, only one glucose transporter, Lgt1, has been characterized so far. Here we report the identification and characterization of a second glucose transporter gene, IGT1, located in a cluster, upstream of LGT1 and downstream of two other putative hexose transporters. Functional characterization of IGT1 in a Saccharomyces cerevisiae hxt-null strain revealed that it encodes a transporter able to mediate uptake of glucose, fructose and mannose and established that its affinity, as measured by Km, could be modulated by glucose concentration in the medium. In fact, IGT1-transformed S. cerevisiae hxt-null cells, grown in 0.1% glucose displayed biphasic glucose uptake kinetics with an intermediate- (Km = 6.5 ± 2.0 mM) and a high-affinity (Km = 0.10 ± 0.01 mM) component, whereas cells grown in 2% glucose displayed monophasic kinetics with an intermediate-affinity (Km of 11.5 ± 1.5 mM). This work contributes to a better characterization of glucose transport in T. delbrueckii, with relevant implications for its exploitation in the food industry.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Torulaspora/genética , Torulaspora/metabolismo , Fermentación , Fructosa/metabolismo , Cinética , Manosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-31678512

RESUMEN

Lipid homeostasis allows cells to adjust membrane biophysical properties in response to changes in environmental conditions. In the yeast Saccharomyces cerevisiae, a downward shift in temperature from an optimal reduces membrane fluidity, which triggers a lipid remodeling of the plasma membrane. How changes in membrane fluidity are perceived, and how the abundance and composition of different lipid classes is properly balanced, remain largely unknown. Here, we show that the levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], the most abundant plasma membrane phosphoinositide, drop rapidly in response to a downward shift in temperature. This change triggers a signaling cascade transmitted to cytosolic diphosphoinositol phosphate derivatives, among them 5-PP-IP4 and 1-IP7, that exert regulatory functions on genes involved in the inositol and phospholipids (PLs) metabolism, and inhibit the activity of the protein kinase Pho85. Consistent with this, cold exposure triggers a specific program of neutral lipids and PLs changes. Furthermore, we identified Pho85 as playing a key role in controlling the synthesis of long-chain bases (LCBs) via the Ypk1-Orm2 regulatory circuit. We conclude that Pho85 orchestrates a coordinated response of lipid metabolic pathways that ensure yeast thermal adaptation.


Asunto(s)
Aclimatación/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Metabolismo de los Lípidos/fisiología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Membrana Celular/metabolismo , Frío/efectos adversos , Regulación Fúngica de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Fluidez de la Membrana/fisiología , Redes y Vías Metabólicas/fisiología , Transducción de Señal/fisiología
9.
Microb Biotechnol ; 13(2): 562-571, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31743950

RESUMEN

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been traditionally considered a housekeeping protein involved in energy generation. However, evidence indicates that GAPDHs from different origins are tightly regulated and that this regulation may be on the basis of glycolysis-related and glycolysis-unrelated functions. In Saccharomyces cerevisiae, Tdh3 is the main GAPDH, although two other isoenzymes encoded by TDH1 and TDH2 have been identified. Like other GAPDHs, Tdh3 exists predominantly as a tetramer, although dimeric and monomeric forms have also been isolated. Mechanisms of Tdh3 regulation may thus imply changes in its oligomeric state or be based in its ability to interact with Tdh1 and/or Tdh2 to form hybrid complexes. However, no direct evidence of the existence of these interactions has been provided and the exact function of Tdh1,2 is unknown. Here, we show that Tdh1,2 immunopurified with a GFP-tagged version of Tdh3 and that lack of this interaction stimulates the Tdh3's aggregation. Furthermore, we found that the combined knockout of TDH1 and TDH2 promotes the loss of cell's viability and increases the growing rate, glucose consumption and CO2 production, suggesting a higher glycolytic flux in the mutant cells. Consistent with this, the tdh3 strain, which displays impaired in vitro GAPDH activity, exhibited the opposite phenotypes. Quite remarkably, tdh1 tdh2 mutant cells show increased sensitivity to aureobasidin A, an inhibitor of the inositolphosphoryl ceramide synthase, while cells lacking Tdh3 showed improved tolerance. The results are in agreement with a link between glycolysis and sphingolipid (SLs) metabolism. Engineering Tdh activity could be thus exploited to alter the SLs status with consequences in different aspects of yeast biotechnology.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Esfingolípidos , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis , Isoenzimas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Int J Food Microbiol ; 245: 59-65, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28131961

RESUMEN

Current winemaking trends include low-temperature fermentations and using non-Saccharomyces yeasts as the most promising tools to produce lower alcohol and increased aromatic complexity wines. Here we explored the oenological attributes of a C. sake strain, H14Cs, isolated in the sub-Antarctic region. As expected, the cold sea water yeast strain showed greater cold growth, Na+-toxicity resistance and freeze tolerance than the S. cerevisiae QA23 strain, which we used as a commercial wine yeast control. C. sake H14Cs was found to be more sensitive to ethanol. The fermentation trials of low-sugar content must demonstrated that C. sake H14Cs allowed the cold-induced lag phase of growth to be eliminated and also notably reduced the ethanol (-30%) and glycerol (-50%) content in wine. Instead C. sake produced sorbitol as a compatible osmolyte. Finally, the inspection of the main wine volatile compounds revealed that C. sake produced more higher alcohols than S. cerevisiae. In conclusion, our work evidences that using the Antarctic C. sake H14Cs yeast improves low-temperature must fermentations and has the potential to provide a wine with less ethanol and also particular attributes.


Asunto(s)
Candida/metabolismo , Frío , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Biomasa , Medios de Cultivo , Etanol/química , Fermentación , Fructosa/química , Glucosa/química , Glicerol/química , Sodio/química , Levadura Seca
11.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 314-323, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864078

RESUMEN

In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-dependent polysome disassembly and overactivity of Gcn4, which result in cold-sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, mutation of several Gcn2-regulators and effectors results in cold-growth effects. Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the regulatory mechanism of Gcn2-eIF2α. Finally, we demonstrated that P-body formation responds to a downshift in temperature in a TRP1-dependent manner and is required for cold tolerance.


Asunto(s)
Adaptación Fisiológica , Frío , Biosíntesis de Proteínas , Saccharomyces cerevisiae/fisiología , Triptófano/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Metabolismo Energético , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Triptófano/metabolismo
12.
Biochim Biophys Acta ; 1863(6 Pt A): 1319-33, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27033517

RESUMEN

All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the actors involved in Pkh/Ypk regulation remain poorly defined. Here, we demonstrate that Sng1, a transmembrane protein, is an effector of the Pkh/Ypk module and identify the phospholipid asymmetry as key for yeast cold adaptation. Overexpression of SNG1 impairs phospholipid flipping, reduces reactive oxygen species (ROS) and improves, in a Pkh-dependent manner, yeast growth in myriocin-treated cells, suggesting that excess Sng1p stimulates the Pkh/Ypk signalling. Furthermore, we link these effects to the association of Sng1p with Nce102p. Indeed, we found that Sng1p interacts with Nce102p both physically and genetically. Moreover, mutant nce102∆ sng1∆ cells show features of impaired Pkh/Ypk signalling, including increased ROS accumulation, reduced life span and defects in Pkh/Ypk-controlled regulatory pathways. Finally, myriocin-induced hyperphosphorylation of Ypk1p and Orm2p, which controls sphingolipid homeostasis, does not occur in nce102∆ sng1∆ cells. Hence, both Nce102p and Sng1p participate in a regulatory circuit that controls the activity of the Pkh/Ypk module and their function is required in response to sphingolipid status.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Bacteriocinas/farmacología , Frío , Ácidos Grasos Monoinsaturados/farmacología , Polarización de Fluorescencia , Glucógeno Sintasa Quinasa 3/genética , Homeostasis/efectos de los fármacos , Immunoblotting , Proteínas de la Membrana/genética , Microscopía Confocal , Modelos Biológicos , Mutación , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Esfingolípidos/antagonistas & inhibidores
13.
J Biotechnol ; 221: 70-7, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26812658

RESUMEN

At near-freezing temperatures (0-4°C), the growth of the yeast Saccharomyces cerevisiae stops or is severely limited, and viability decreases. Under these conditions, yeast cells trigger a biochemical response, in which trehalose and glycerol accumulate and protect them against severe cold and freeze injury. However, the mechanisms that allow yeast cells to sustain this response have been not clarified. The effects of severe cold on the proteome of S. cerevisiae have been not investigated and its importance in providing cell survival at near-freezing temperatures and upon freezing remains unknown. Here, we have compared the protein profile of two industrial baker's yeast strains at 30°C and 4°C. Overall, a total of 16 proteins involved in energy-metabolism, translation and redox homeostasis were identified as showing increased abundance at 4°C. The predominant presence of glycolytic proteins among those upregulated at 4°C, likely represents a mechanism to maintain a constant supply of ATP for the synthesis of glycerol and other protective molecules. Accumulation of these molecules is by far the most important component in enhancing viability of baker's yeast strains upon freezing. Overexpression of genes encoding certain proteins associated with translation or redox homeostasis provided specifically protection against extreme cold damage, underlying the importance of these functions in the near-freezing response.


Asunto(s)
Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Adaptación Fisiológica , Frío , Regulación Fúngica de la Expresión Génica , Glucólisis , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/metabolismo
14.
Biochim Biophys Acta ; 1861(3): 213-26, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26724696

RESUMEN

Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its derivatives diphosphoinositol phosphates (DPIPs) play key signaling and regulatory roles. However, a direct function of these molecules in lipid and membrane homeostasis remains obscure. Here, we have studied the cold tolerance phenotype of yeast cells lacking the Inp51-mediated phosphoinositide-5-phosphatase. Genetic and biochemical approaches showed that increased metabolism of PI(4,5)P2 reduces the activity of the Pho85 kinase by increasing the levels of the DPIP isomer 1-IP7. This effect was key in the cold tolerance phenotype. Indeed, pho85 mutant cells grew better than the wild-type at 15 °C, and lack of this kinase abolished the inp51-mediated cold phenotype. Remarkably, reduced Pho85 function by loss of Inp51 affected the activity of the Pho85-regulated target Pah1, the yeast phosphatidate phosphatase. Cells lacking Inp51 showed reduced Pah1 abundance, derepression of an INO1-lacZ reporter, decreased content of triacylglycerides and elevated levels of phosphatidate, hallmarks of the pah1 mutant. However, the inp51 phenotype was not associated to low Pah1 activity since deletion of PAH1 caused cold sensitivity. In addition, the inp51 mutant exhibited features not shared by pah1, including a 40%-reduction in total lipid content and decreased membrane fluidity. These changes may influence the activity of membrane-anchored and/or associated proteins since deletion of INP51 slows down the transit to the vacuole of the fluorescent dye FM4-64. In conclusion, our work supports a model in which changes in the PI(4,5)P2 pool affect the 1-IP7 levels modulating the activity of Pho85, Pah1 and likely additional Pho85-controlled targets, and regulate lipid composition and membrane properties.


Asunto(s)
Membrana Celular/enzimología , Frío , Fluidez de la Membrana , Lípidos de la Membrana/metabolismo , Mutación , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adaptación Fisiológica , Transporte Biológico , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación Fúngica de la Expresión Génica , Genotipo , Fenotipo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sistemas de Mensajero Secundario , Factores de Tiempo , Triglicéridos/metabolismo
15.
FEBS Lett ; 589(16): 2163-8, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26140985

RESUMEN

We examined the physiological significance of the nuclear versus cytosolic localization of the MAPK Hog1p in the ability of yeast cells to cope with osmotic and ER (endoplasmic reticulum) stress. Our results indicate that nuclear import of Hog1p is not critical for osmoadaptation. Plasma membrane-anchored Hog1p is still able to induce increased expression of GPD1 and glycerol accumulation. This is a key osmoregulatory event, although a small production of the osmolyte coupled with the nuclear import of Hog1p is sufficient to provide osmoresistance. On the contrary, the nuclear activity of Hog1p is dispensable for ER stress adaptation.


Asunto(s)
Adaptación Fisiológica , Núcleo Celular/enzimología , Citosol/enzimología , Estrés del Retículo Endoplásmico , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Respuesta de Proteína Desplegada , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antiinfecciosos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Glicerol/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Mutantes/metabolismo , Concentración Osmolar , Osmorregulación , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Solución Salina Hipertónica/química , Sorbitol/química , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
16.
Microb Cell Fact ; 14: 100, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26156706

RESUMEN

BACKGROUND: Cold stress reduces microbial growth and metabolism being relevant in industrial processes like wine making and brewing. Knowledge on the cold transcriptional response of Saccharomyces cerevisiae suggests the need of a proper redox balance. Nevertheless, there are no direct evidence of the links between NAD(P) levels and cold growth and how engineering of enzymatic reactions requiring NAD(P) may be used to modify the performance of industrial strains at low temperature. RESULTS: Recombinant strains of S. cerevisiae modified for increased NADPH- and NADH-dependent Gdh1 and Gdh2 activity were tested for growth at low temperature. A high-copy number of the GDH2-encoded glutamate dehydrogenase gene stimulated growth at 15°C, while overexpression of GDH1 had detrimental effects, a difference likely caused by cofactor preferences. Indeed, neither the Trp(-) character of the tested strains, which could affect the synthesis of NAD(P), nor changes in oxidative stress susceptibility by overexpression of GDH1 and GDH2 account for the observed phenotypes. However, increased or reduced NADPH availability by knock-out or overexpression of GRE3, the NADPH-dependent aldose reductase gene, eliminated or exacerbated the cold-growth defect observed in YEpGDH1 cells. We also demonstrated that decreased capacity of glycerol production impairs growth at 15 but not at 30°C and that 15°C-grown baker's yeast cells display higher fermentative capacity than those cultivated at 30°C. Thus, increasing NADH oxidation by overexpression of GDH2 would help to avoid perturbations in the redox metabolism induced by a higher fermentative/oxidative balance at low temperature. Finally, it is shown that overexpression of GDH2 increases notably the cold growth in the wine yeast strain QA23 in both standard growth medium and synthetic grape must. CONCLUSIONS: Redox constraints limit the growth of S. cerevisiae at temperatures below the optimal. An adequate supply of NAD(P) precursors as well as a proper level of reducing equivalents in the form of NADPH are required for cold growth. However, a major limitation is the increased need of oxidation of NADH to NAD(+) at low temperature. In this scenario, our results identify the ammonium assimilation pathway as a target for the genetic improvement of cold growth in industrial strains.


Asunto(s)
Glutamato Deshidrogenasa/genética , NADP/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glutamato Deshidrogenasa/metabolismo , Ingeniería Metabólica , Oxidación-Reducción , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biochem J ; 468(1): 33-47, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25730376

RESUMEN

Glc7 is the only catalytic subunit of the protein phosphatase type 1 in the yeast S. cerevisiae and, together with its regulatory subunits, is involved in many essential processes. Analysis of the non-essential mutants in the regulatory subunits of Glc7 revealed that the lack of Reg1, and no other subunit, causes hypersensitivity to unfolded protein response (UPR)-inducers, which was concomitant with an augmented UPR element-dependent transcriptional response. The Glc7-Reg1 complex takes part in the regulation of the yeast AMP-activated serine/threonine protein kinase Snf1 in response to glucose. We demonstrate in the present study that the observed phenotypes of reg1 mutant cells are attributable to the inappropriate activation of Snf1. Indeed, growth in the presence of limited concentrations of glucose, where Snf1 is active, or expression of active forms of Snf1 in a wild-type strain increased the sensitivity to the UPR-inducer tunicamycin. Furthermore, reg1 mutant cells showed a sustained HAC1 mRNA splicing and KAR2 mRNA levels during the recovery phase of the UPR, and dysregulation of the Ire1-oligomeric equilibrium. Finally, overexpression of protein phosphatases Ptc2 and Ptc3 alleviated the growth defect of reg1 cells under endoplasmic reticulum (ER) stress conditions. Altogether, our results reveal that Snf1 plays an important role in the attenuation of the UPR, as well as identifying the protein kinase and its effectors as possible pharmacological targets for human diseases that are associated with insufficient UPR activation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada , Dominio Catalítico/genética , Estrés del Retículo Endoplásmico , Activación Enzimática , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Multimerización de Proteína , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética
18.
Annu Rev Food Sci Technol ; 4: 191-214, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23464571

RESUMEN

Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO2 rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement.


Asunto(s)
Culinaria , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Biomasa , Pan/microbiología , Dióxido de Carbono/metabolismo , Desecación , Fermentación , Congelación , Genotipo , Monosacáridos/metabolismo , Presión Osmótica , Fenotipo , Especificidad de la Especie
19.
Biochem J ; 446(3): 477-88, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22747505

RESUMEN

Unlike other stresses, the physiological significance and molecular mechanisms involved in the yeast cold response are largely unknown. In the present study, we show that the CWI (cell wall integrity) pathway plays an important role in the growth of Saccharomyces cerevisiae at low temperatures. Cells lacking the Wsc1p (wall integrity and stress response component 1) membrane sensor or the MAPKs (mitogen-activated protein kinases) Bck1p (bypass of C kinase 1), Mkk (Mapk kinase) 1p/Mkk2p or Slt2p (suppressor of lyt2) exhibited cold sensitivity. However, there was no evidence of either a cold-provoked perturbation of the cell wall or a differential cold expression program mediated by Slt2p. The results of the present study suggest that Slt2p is activated by different inputs in response to nutrient signals and mediates growth control through TORC1 (target of rapamycin 1 complex)-Sch9p (suppressor of cdc25) and PKA (protein kinase A) at low temperatures. We found that absence of TOR1 (target of rapamycin 1) causes cold sensitivity, whereas a ras2Δ mutant shows increased cold growth. Lack of Sch9p alleviates the phenotype of slt2Δ and bck1Δ mutant cells, as well as attenuation of PKA activity by overexpression of BCY1 (bypass of cyclase mutations 1). Interestingly, swi4Δ mutant cells display cold sensitivity, but the phenotype is neither mediated by the Slt2p-regulated induction of Swi4p (switching deficient 4)-responsive promoters nor influenced by osmotic stabilization. Hence, cold signalling through the CWI pathway has distinct features and might mediate still unknown effectors and targets.


Asunto(s)
Pared Celular/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal , Temperatura , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Appl Environ Microbiol ; 77(21): 7517-25, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21908639

RESUMEN

A decrease in ambient temperature alters membrane functionality and impairs the proper interaction between the cell and its external milieu. Understanding how cells adapt membrane properties and modulate the activity of membrane-associated proteins is therefore of major interest from both the basic and the applied points of view. Here, we have isolated multicopy suppressors of the cold sensitivity phenotype of a trp1 strain of Saccharomyces cerevisiae. Three poorly characterized genes, namely, ALY2 encoding the endocytic adaptor, CAJ1 encoding the J protein, and UBP13 encoding the ubiquitin C-terminal hydrolase, were identified as mediating increased growth at 12°C of both Trp⁻ and Trp+ yeast strains. This effect was likely due to the downregulation of cold-instigated degradation of nutrient permeases, since it was missing from cells of the rsp5Δ mutant strain, which contains a point mutation in the gene encoding ubiquitin ligase. Indeed, we found that 12°C treatments reduced the level of several membrane transporters, including Tat1p and Tat2p, two yeast tryptophan transporters, and Gap1, the general amino acid permease. We also found that the lack of Rsp5p increased the steady state level of Tat1p and Tat2p and that ALY2-engineered cells grown at 12°C had higher Tat2p and Gap1p abundance. Nevertheless, the high copy number of ALY2 or UBP13 improved cold growth even in the absence of Tat2p. Consistent with this, ALY2- and UBP13-engineered cells of the industrial QA23 strain grew faster and produced more CO2 at 12°C than did the parental when maltose was used as the sole carbon source. Hence, the multicopy suppressors isolated in this work appear to contribute to the correct control of the cell surface protein repertoire and their engineering might have potential biotechnological applications.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/fisiología , Ubiquitinación , Frío , Proteínas de la Membrana/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA