Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 17: 1221794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936650

RESUMEN

The transcription factor Aplysia CCAAT/enhancer binding protein (ApC/EBP) is expressed as an immediate early gene in the cAMP responsive element binding protein (CREB) mediated gene cascade, and it has essential functions in the synaptic consolidation of memory following a learning event. Synaptic consolidation primarily involves morphological changes at neuronal synapses, which are facilitated through the reorganization of the actin and microtubular cytoarchitecture of the cell. During early nervous system development, the transmembrane synaptic protein teneurin acts directly upon neuronal presynaptic microtubules and postsynaptic spectrin-based cytoskeletons to facilitate the creation of new synapses. It is reasonable to hypothesize that teneurin may also be linked to learning-induced synaptic changes and is a potential candidate to be a later gene expressed in the CREB-mediated gene cascade downstream of ApC/EBP. To assess the role of ApC/EBP and teneurin in learning and memory in the marine snail Aplysia californica, young (age 7-8 months) and aged (age 13-15 months; aging stage AII) siblings of Aplysia were trained in an operant conditioning paradigm-learning food is inedible (LFI)-over 2 days, during which they learned to modify the feeding reflex. Aged Aplysia had enhanced performance of the LFI task on the second day than younger siblings although far more aged animals were excluded from the analysis because of the initial failure in learning to recognize the inedible probe. After 2 days of training, ApC/EBP isoform X1 mRNA and teneurin mRNA were quantified in selected neurons of the buccal ganglia, the locus of neural circuits in LFI. Teneurin expression was elevated in aged Aplysia compared to young siblings regardless of training. ApC/EBP isoform X1 expression was significantly higher in untrained aged animals than in untrained young siblings but decreased in trained aged animals compared to untrained aged animals. Elevated levels of ApC/EBP isoform X1 and teneurin mRNA before training may have contributed to the enhancement of LFI performance in the aged animals that successfully learned.

2.
Environ Toxicol Chem ; 42(6): 1229-1256, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36715369

RESUMEN

Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente/métodos , Estuarios , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Ecotoxicología
3.
Environ Toxicol Chem ; 42(1): 100-116, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36282016

RESUMEN

To reduce the use of intact animals for chemical safety testing, while ensuring protection of ecosystems and human health, there is a demand for new approach methodologies (NAMs) that provide relevant scientific information at a quality equivalent to or better than traditional approaches. The present case study examined whether bioactivity and associated potency measured in an in vitro screening assay for aromatase inhibition could be used together with an adverse outcome pathway (AOP) and mechanistically based computational models to predict previously uncharacterized in vivo effects. Model simulations were used to inform designs of 60-h and 10-21-day in vivo exposures of adult fathead minnows (Pimephales promelas) to three or four test concentrations of the in vitro aromatase inhibitor imazalil ranging from 0.12 to 260 µg/L water. Consistent with an AOP linking aromatase inhibition to reproductive impairment in fish, exposure to the fungicide resulted in significant reductions in ex vivo production of 17ß-estradiol (E2) by ovary tissue (≥165 µg imazalil/L), plasma E2 concentrations (≥74 µg imazalil/L), vitellogenin (Vtg) messenger RNA expression (≥165 µg imazalil/L), Vtg plasma concentrations (≥74 µg imazalil/L), uptake of Vtg into oocytes (≥260 µg imazalil/L), and overall reproductive output in terms of cumulative fecundity, number of spawning events, and eggs per spawning event (≥24 µg imazalil/L). Despite many potential sources of uncertainty in potency and efficacy estimates based on model simulations, observed magnitudes of apical effects were quite consistent with model predictions, and in vivo potency was within an order of magnitude of that predicted based on in vitro relative potency. Overall, our study suggests that NAMs and AOP-based approaches can support meaningful reduction and refinement of animal testing. Environ Toxicol Chem 2023;42:100-116. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Cyprinidae , Ovario , Humanos , Animales , Femenino , Aromatasa/genética , Aromatasa/metabolismo , Fadrozol/toxicidad , Ecotoxicología , Ecosistema , Estradiol/metabolismo , Cyprinidae/fisiología , Vitelogeninas/metabolismo
4.
Environ Toxicol Chem ; 40(4): 1155-1170, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33332681

RESUMEN

The present study evaluated whether in vitro measures of aromatase inhibition as inputs into a quantitative adverse outcome pathway (qAOP) construct could effectively predict in vivo effects on 17ß-estradiol (E2) and vitellogenin (VTG) concentrations in female fathead minnows. Five chemicals identified as aromatase inhibitors in mammalian-based ToxCast assays were screened for their ability to inhibit fathead minnow aromatase in vitro. Female fathead minnows were then exposed to 3 of those chemicals: letrozole, epoxiconazole, and imazalil in concentration-response (5 concentrations plus control) for 24 h. Consistent with AOP-based expectations, all 3 chemicals caused significant reductions in plasma E2 and hepatic VTG transcription. Characteristic compensatory upregulation of aromatase and follicle-stimulating hormone receptor (fshr) transcripts in the ovary were observed for letrozole but not for the other 2 compounds. Considering the overall patterns of concentration-response and temporal concordance among endpoints, data from the in vivo experiments strengthen confidence in the qualitative relationships outlined by the AOP. Quantitatively, the qAOP model provided predictions that fell within the standard error of measured data for letrozole but not for imazalil and epoxiconazole. However, the inclusion of measured plasma concentrations of the test chemicals as inputs improved model predictions, with all predictions falling within the range of measured values. Results highlight both the utility and limitations of the qAOP and its potential use in 21st century ecotoxicology. Environ Toxicol Chem 2021;40:1155-1170. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Cyprinidae , Fadrozol , Animales , Aromatasa/genética , Ecotoxicología , Estradiol , Fadrozol/toxicidad , Femenino , Ovario , Vitelogeninas/genética
5.
Environ Toxicol Chem ; 39(4): 913-922, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31965587

RESUMEN

Predictive approaches to assessing the toxicity of contaminant mixtures have been largely limited to chemicals that exert effects through the same biological molecular initiating event. However, by understanding specific pathways through which chemicals exert effects, it may be possible to identify shared "downstream" nodes as the basis for forecasting interactive effects of chemicals with different molecular initiating events. Adverse outcome pathway (AOP) networks conceptually support this type of analysis. We assessed the utility of a simple AOP network for predicting the effects of mixtures of an aromatase inhibitor (fadrozole) and an androgen receptor agonist (17ß-trenbolone) on aspects of reproductive endocrine function in female fathead minnows. The fish were exposed to multiple concentrations of fadrozole and 17ß-trenbolone individually or in combination for 48 or 96 h. Effects on 2 shared nodes in the AOP network, plasma 17ß-estradiol (E2) concentration and vitellogenin (VTG) production (measured as hepatic vtg transcripts) responded as anticipated to fadrozole alone but were minimally impacted by 17ß-trenbolone alone. Overall, there were indications that 17ß-trenbolone enhanced decreases in E2 and vtg in fadrozole-exposed fish, as anticipated, but the results often were not statistically significant. Failure to consistently observe hypothesized interactions between fadrozole and 17ß-trenbolone could be due to several factors, including lack of impact of 17ß-trenbolone, inherent biological variability in the endpoints assessed, and/or an incomplete understanding of interactions (including feedback) between different pathways within the hypothalamic-pituitary-gonadal axis. Environ Toxicol Chem 2020;39:913-922. © 2020 SETAC.


Asunto(s)
Rutas de Resultados Adversos , Andrógenos/toxicidad , Inhibidores de la Aromatasa/toxicidad , Cyprinidae/fisiología , Sistema Endocrino/efectos de los fármacos , Reproducción/efectos de los fármacos , Animales , Cyprinidae/metabolismo , Sinergismo Farmacológico , Estradiol/metabolismo , Fadrozol/toxicidad , Femenino , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Masculino , Ovario/efectos de los fármacos , Ovario/metabolismo , Acetato de Trembolona/toxicidad , Vitelogeninas/metabolismo
6.
Toxicol Sci ; 170(2): 394-403, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31099392

RESUMEN

There is significant concern regarding potential impairment of fish reproduction associated with endocrine disrupting chemicals. Aromatase (CYP19) is a steroidogenic enzyme involved in the conversion of androgens to estrogens. Inhibition of aromatase by chemicals can result in reduced concentrations of estrogens leading to adverse reproductive effects. These effects have been extensively investigated in a small number of laboratory model fishes, such as fathead minnow (Pimephales promelas), Japanese medaka (Oryzias latipes), and zebrafish (Danio rerio). But, differences in sensitivity among species are largely unknown. Therefore, this study took a first step toward understanding potential differences in sensitivity to aromatase inhibitors among fishes. Specifically, a standard in vitro aromatase inhibition assay using subcellular fractions of whole tissue homogenates was used to evaluate the potential sensitivity of 18 phylogenetically diverse species of freshwater fish to the nonsteroidal aromatase inhibitor fadrozole. Sensitivity to fadrozole ranged by more than 52-fold among these species. Five species were further investigated for sensitivity to up to 4 additional nonsteroidal aromatase inhibitors, letrozole, imazalil, prochloraz, and propiconazole. Potencies of each of these chemicals relative to fadrozole ranged by up to 2 orders of magnitude among the 5 species. Fathead minnow, Japanese medaka, and zebrafish were among the least sensitive to all the investigated chemicals; therefore, ecological risks of aromatase inhibitors derived from these species might not be adequately protective of more sensitive native fishes. This information could guide more objective ecological risk assessments of native fishes to chemicals that inhibit aromatase.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Reproducción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Fadrozol/farmacología , Femenino , Peces , Agua Dulce , Especificidad de la Especie
7.
Gen Comp Endocrinol ; 266: 87-100, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29733815

RESUMEN

The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33 days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and ß). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.


Asunto(s)
Cyprinidae/embriología , Cyprinidae/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Glándula Tiroides/metabolismo , Transcripción Genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Desarrollo Embrionario , Proteínas de Peces/metabolismo , Larva/metabolismo , Análisis de Componente Principal , Especificidad de la Especie
8.
Environ Pollut ; 236: 718-733, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29454282

RESUMEN

The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in biological endpoints associated with CEC exposure. CECs were present in all water samples and POCIS extracts. A total of 111 and 97 chemicals were detected in at least one water sample and POCIS extract, respectively. Known estrogenic chemicals were detected in water samples at all 16 sites and in POCIS extracts at 13 sites. Most sites elicited estrogenic activity in bioassays. Ranking sites and rivers based on water chemistry, POCIS chemistry, or total in vitro estrogenicity produced comparable patterns with the Cuyahoga River ranking as most and the Raquette River as least affected by CECs. Changes in biological responses grouped according to physiological processes, and differed between species but not sex. The Fox and Cuyahoga Rivers often had significantly different patterns in biological response Our study supports the need for multiple lines of evidence and provides a framework to assess CEC presence and effects in fish in the Laurentian Great Lakes basin.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Contaminantes Químicos del Agua/toxicidad , Animales , Cyprinidae , Estrona , Compuestos Orgánicos/análisis , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis
9.
Environ Toxicol Chem ; 36(11): 2942-2952, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28488362

RESUMEN

Inflation of the posterior and/or anterior swim bladder is a process previously demonstrated to be regulated by thyroid hormones. We investigated whether inhibition of deiodinases, which convert thyroxine (T4) to the more biologically active form, 3,5,3'-triiodothyronine (T3), would impact swim bladder inflation. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). First, fathead minnow embryos were exposed to 0.6, 1.9, or 6.0 mg/L or control water until 6 d postfertilization (dpf), at which time posterior swim bladder inflation was assessed. To examine anterior swim bladder inflation, a second study was conducted with 6-dpf larvae exposed to the same IOP concentrations until 21 dpf. Fish from both studies were sampled for T4/T3 measurements and gene transcription analyses. Incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole-body T4 concentrations increased and T3 concentrations decreased in all IOP treatments. Consistent with hypothesized compensatory responses, deiodinase-2 messenger ribonucleic acid (mRNA) was up-regulated in the larval study, and thyroperoxidase mRNA was down-regulated in all IOP treatments in both studies. These results support the hypothesized adverse outcome pathways linking inhibition of deiodinase activity to impaired swim bladder inflation. Environ Toxicol Chem 2017;36:2942-2952. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Asunto(s)
Sacos Aéreos/efectos de los fármacos , Cyprinidae/crecimiento & desarrollo , Yoduro Peroxidasa/metabolismo , Ácido Yopanoico/toxicidad , Contaminantes Químicos del Agua/toxicidad , Sacos Aéreos/fisiología , Animales , Cromatografía Líquida de Alta Presión , Cyprinidae/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/fisiología , Desarrollo Embrionario/efectos de los fármacos , Yoduro Peroxidasa/antagonistas & inhibidores , Yoduro Peroxidasa/genética , Larva/efectos de los fármacos , Larva/metabolismo , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem , Tiroxina/análisis , Triyodotironina/análisis , Contaminantes Químicos del Agua/química
10.
Aquat Toxicol ; 173: 192-203, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26852267

RESUMEN

In the present study, a hypothesized adverse outcome pathway linking inhibition of thyroid peroxidase (TPO) activity to impaired swim bladder inflation was investigated in two experiments in which fathead minnows (Pimephales promelas) were exposed to 2-mercaptobenzothiazole (MBT). Continuous exposure to 1mg MBT/L for up to 22 days had no effect on inflation of the posterior chamber of the swim bladder, which typically inflates around 6 days post fertilization (dpf), a period during which maternally-derived thyroid hormone is presumed to be present. In contrast, inflation of the anterior swim bladder, which occurs around 14dpf, was impacted. Specifically, at 14dpf, approximately 50% of fish exposed to 1mg MBT/L did not have an inflated anterior swim bladder. In fish exposed to MBT through 21 or 22dpf, the anterior swim bladder was able to inflate, but the ratio of the anterior/posterior chamber length was significantly reduced compared to controls. Both abundance of thyroid peroxidase mRNA and thyroid follicle histology suggest that fathead minnows mounted a compensatory response to the presumed inhibition of TPO activity by MBT. Time-course characterization showed that fish exposed to MBT for at least 4 days prior to normal anterior swim bladder inflation had significant reductions in anterior swim bladder size, relative to the posterior chamber, compared to controls. These results, along with similar results observed in zebrafish (see part II, this issue) are consistent with the hypothesis that thyroid hormone signaling plays a significant role in mediating anterior swim bladder inflation and development in cyprinids, and that role can be disrupted by exposure to thyroid hormone synthesis inhibitors. Nonetheless, possible thyroid-independent actions of MBT on anterior swim bladder inflation cannot be ruled out based on the present results. Overall, although anterior swim bladder inflation has not been directly linked to survival as posterior swim bladder inflation has, potential links to adverse ecological outcomes are plausible given involvement of the anterior chamber in sound production and detection.


Asunto(s)
Sacos Aéreos/efectos de los fármacos , Benzotiazoles/toxicidad , Cyprinidae/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Organogénesis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...