Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4177, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755196

RESUMEN

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Interferones , SARS-CoV-2 , Transducción de Señal , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Transducción de Señal/inmunología , Interferones/metabolismo , Interferones/inmunología , Femenino , Masculino , Persona de Mediana Edad , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Linfocitos T CD4-Positivos/inmunología , Anciano , Adulto , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética
2.
Immunol Rev ; 323(1): 227-240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577999

RESUMEN

Humans exhibit considerable variability in their immune responses to the same immune challenges. Such variation is widespread and affects individual and population-level susceptibility to infectious diseases and immune disorders. Although the factors influencing immune response diversity are partially understood, what mechanisms lead to the wide range of immune traits in healthy individuals remain largely unexplained. Here, we discuss the role that natural selection has played in driving phenotypic differences in immune responses across populations and present-day susceptibility to immune-related disorders. Further, we touch on future directions in the field of immunogenomics, highlighting the value of expanding this work to human populations globally, the utility of modeling the immune response as a dynamic process, and the importance of considering the potential polygenic nature of natural selection. Identifying loci acted upon by evolution may further pinpoint variants critically involved in disease etiology, and designing studies to capture these effects will enrich our understanding of the genetic contributions to immunity and immune dysregulation.


Asunto(s)
Selección Genética , Humanos , Animales , Predisposición Genética a la Enfermedad , Inmunidad/genética , Variación Genética , Genética de Población , Fenotipo , Susceptibilidad a Enfermedades/inmunología
3.
J Allergy Clin Immunol ; 151(1): 260-271, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987350

RESUMEN

BACKGROUND: Severe combined immunodeficiency (SCID) comprises rare inherited disorders of immunity that require definitive treatment through hematopoietic cell transplantation (HCT) or gene therapy for survival. Despite successes of allogeneic HCT, many SCID patients experience incomplete immune reconstitution, persistent T-cell lymphopenia, and poor long-term outcomes. OBJECTIVE: We hypothesized that CD4+ T-cell lymphopenia could be associated with a state of T-cell exhaustion in previously transplanted SCID patients. METHODS: We analyzed markers of exhaustion in blood samples from 61 SCID patients at a median of 10.4 years after HCT. RESULTS: Compared to post-HCT SCID patients with normal CD4+ T-cell counts, those with poor T-cell reconstitution showed lower frequency of naive CD45RA+/CCR7+ T cells, recent thymic emigrants, and TCR excision circles. They also had a restricted TCR repertoire, increased expression of inhibitory receptors (PD-1, 2B4, CD160, BTLA, CTLA-4), and increased activation markers (HLA-DR, perforin) on their total and naive CD8+ T cells, suggesting T-cell exhaustion and aberrant activation, respectively. The exhaustion score of CD8+ T cells was inversely correlated with CD4+ T-cell count, recent thymic emigrants, TCR excision circles, and TCR diversity. Exhaustion scores were higher among recipients of unconditioned HCT, especially when further in time from HCT. Patients with fewer CD4+ T cells showed a transcriptional signature of exhaustion. CONCLUSIONS: Recipients of unconditioned HCT for SCID may develop late post-HCT T-cell exhaustion as a result of diminished production of T-lineage cells. Elevated expression of inhibitory receptors on their T cells may be a biomarker of poor long-term T-cell reconstitution.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfopenia , Inmunodeficiencia Combinada Grave , Humanos , Linfocitos T CD8-positivos , Agotamiento de Células T , Receptores de Antígenos de Linfocitos T
4.
Cell Rep ; 39(12): 110974, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732121

RESUMEN

Severity of pulmonary viral infections, including influenza A virus (IAV), is linked to excessive immunopathology, which impairs lung function. Thus, the same immune responses that limit viral replication can concomitantly cause lung damage that must be countered by largely uncharacterized disease tolerance mechanisms. Here, we show that mitochondrial cyclophilin D (CypD) protects against IAV via disease tolerance. CypD-/- mice are significantly more susceptible to IAV infection despite comparable antiviral immunity. This susceptibility results from damage to the lung epithelial barrier caused by a reduction in interleukin-22 (IL-22)-producing natural killer (NK) cells. Transcriptomic and functional data reveal that CypD-/- NK cells are immature and have altered cellular metabolism and impaired IL-22 production, correlating with dysregulated bone marrow lymphopoiesis. Administration of recombinant IL-22 or transfer of wild-type (WT) NK cells abrogates pulmonary damage and protects CypD-/- mice after IAV infection. Collectively, these results demonstrate a key role for CypD in NK cell-mediated disease tolerance.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Mitocondrias , Infecciones por Orthomyxoviridae , Animales , Peptidil-Prolil Isomerasa F , Humanos , Interleucinas , Células Asesinas Naturales , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Interleucina-22
5.
Science ; 374(6571): 1127-1133, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34822289

RESUMEN

Humans differ in their susceptibility to infectious disease, partly owing to variation in the immune response after infection. We used single-cell RNA sequencing to quantify variation in the response to influenza infection in peripheral blood mononuclear cells from European- and African-ancestry males. Genetic ancestry effects are common but highly cell type specific. Higher levels of European ancestry are associated with increased type I interferon pathway activity in early infection, which predicts reduced viral titers at later time points. Substantial population-associated variation is explained by cis-expression quantitative trait loci that are differentiated by genetic ancestry. Furthermore, genetic ancestry­associated genes are enriched among genes correlated with COVID-19 disease severity, suggesting that the early immune response contributes to ancestry-associated differences for multiple viral infection outcomes.


Asunto(s)
Negro o Afroamericano/genética , COVID-19/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/genética , Gripe Humana/inmunología , Leucocitos Mononucleares/virología , Población Blanca/genética , Adulto , Anciano , COVID-19/inmunología , COVID-19/fisiopatología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Variación Genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Transcripción Genética , Carga Viral , Adulto Joven
6.
Immunity ; 52(5): 737-741, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433946

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated disease, COVID-19, has demonstrated the devastating impact of a novel, infectious pathogen on a susceptible population. Here, we explain the basic concepts of herd immunity and discuss its implications in the context of COVID-19.


Asunto(s)
Infecciones por Coronavirus/inmunología , Inmunidad Colectiva , Modelos Inmunológicos , Neumonía Viral/inmunología , Número Básico de Reproducción , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Salud Global , Humanos , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , SARS-CoV-2 , Vacunación , Cobertura de Vacunación
7.
Proc Natl Acad Sci U S A ; 116(14): 6938-6943, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30886108

RESUMEN

DNA methylation is considered to be a relatively stable epigenetic mark. However, a growing body of evidence indicates that DNA methylation levels can change rapidly; for example, in innate immune cells facing an infectious agent. Nevertheless, the causal relationship between changes in DNA methylation and gene expression during infection remains to be elucidated. Here, we generated time-course data on DNA methylation, gene expression, and chromatin accessibility patterns during infection of human dendritic cells with Mycobacterium tuberculosis We found that the immune response to infection is accompanied by active demethylation of thousands of CpG sites overlapping distal enhancer elements. However, virtually all changes in gene expression in response to infection occur before detectable changes in DNA methylation, indicating that the observed losses in methylation are a downstream consequence of transcriptional activation. Footprinting analysis revealed that immune-related transcription factors (TFs), such as NF-κB/Rel, are recruited to enhancer elements before the observed losses in methylation, suggesting that DNA demethylation is mediated by TF binding to cis-acting elements. Collectively, our results show that DNA demethylation plays a limited role to the establishment of the core regulatory program engaged upon infection.


Asunto(s)
Islas de CpG/inmunología , Desmetilación del ADN , Células Dendríticas/inmunología , Regulación de la Expresión Génica/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Células Dendríticas/microbiología , Células Dendríticas/patología , Femenino , Humanos , Masculino , Tuberculosis/patología
8.
J Clin Invest ; 128(10): 4654-4668, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30198904

RESUMEN

Checkpoint blockade immunotherapy targeting the PD-1/PD-L1 inhibitory axis has produced remarkable results in the treatment of several types of cancer. Whereas cytotoxic T cells are known to provide important antitumor effects during checkpoint blockade, certain cancers with low MHC expression are responsive to therapy, suggesting that other immune cell types may also play a role. Here, we employed several mouse models of cancer to investigate the effect of PD-1/PD-L1 blockade on NK cells, a population of cytotoxic innate lymphocytes that also mediate antitumor immunity. We discovered that PD-1 and PD-L1 blockade elicited a strong NK cell response that was indispensable for the full therapeutic effect of immunotherapy. PD-1 was expressed on NK cells within transplantable, spontaneous, and genetically induced mouse tumor models, and PD-L1 expression in cancer cells resulted in reduced NK cell responses and generation of more aggressive tumors in vivo. PD-1 expression was more abundant on NK cells with an activated and more responsive phenotype and did not mark NK cells with an exhausted phenotype. These results demonstrate the importance of the PD-1/PD-L1 axis in inhibiting NK cell responses in vivo and reveal that NK cells, in addition to T cells, mediate the effect of PD-1/PD-L1 blockade immunotherapy.


Asunto(s)
Antígeno B7-H1/inmunología , Inmunoterapia , Células Asesinas Naturales/inmunología , Neoplasias Experimentales/terapia , Receptor de Muerte Celular Programada 1/inmunología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Humanos , Células K562 , Células Asesinas Naturales/patología , Ratones , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética
9.
Curr Opin Genet Dev ; 53: 28-35, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29960896

RESUMEN

Humans display remarkable immune response variation when exposed to identical immune challenges. However, our understanding of the genetic, evolutionary, and environmental factors that impact this inter-individual and inter-population immune response heterogeneity is still in its early days. In this review, we discuss three fundamental questions concerning the recent evolution of the human immune system: the degree to which individuals from different populations vary in their innate immune responses, the genetic variants accounting for such differences, and the evolutionary mechanisms that led to the establishment of these variants in modern human populations. We also discuss how past selective events might have contributed to the uneven distribution of immune-related disorders across populations.


Asunto(s)
Evolución Molecular , Genética de Población , Inmunidad Innata/genética , Interacción Gen-Ambiente , Heterogeneidad Genética , Humanos
10.
Immunity ; 48(6): 1074-1076, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29924972

RESUMEN

Bats are reservoir hosts of numerous viruses that cause severe pathology in humans. How bats cope with such pathogens remains elusive. In a recent issue of Cell, Pavlovich et al. (2018) describe several key adaptations in innate immune-related genes that suggest that the Egyptian rousette fruit bat relies on immune tolerance mechanisms to manage viral infections.


Asunto(s)
Antivirales , Quirópteros , Animales , Egipto , Humanos , Tolerancia Inmunológica , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...